Abstract
Background: Early stages of hepatitis B virus (HBV) infection usually involve inflammation of the liver. Patients with chronic infection have an increased risk of progressive liver fibrosis, cirrhosis, and life-threatening clinical complications of end-stage hepatocellular carcinoma (HCC). Content: Early diagnosis of hepatic fibrosis and timely clinical management are critical to controlling disease progression and decreasing the burden of end-stage liver cancer. Fibrosis staging, through its current gold standard, liver biopsy, improves patient outcomes, but the clinical procedure is invasive with unpleasant post-procedural complications. Routine blood test markers offer promising diagnostic potential for early detection of liver disease without biopsy. There is a plethora of candidate routine blood test markers that have gone through phases of biomarker validation and have shown great promise, but their current limitations include a predictive ability that is limited to only a few stages of fibrosis. However, the advent of machine learning, notably pattern recognition, presents an opportunity to refine blood-based non-invasive models of hepatic fibrosis in the future. Summary: In this review, we highlight the current landscape of routine blood-based non-invasive models of hepatic fibrosis, and appraise the potential application of machine learning (pattern recognition) algorithms to refining these models and optimising clinical predictions of HBV-associated liver disease. Outlook: Machine learning via pattern recognition algorithms takes data analytics to a new realm, and offers the opportunity for enhanced multi-marker fibrosis stage prediction using pathology profile that leverages information across patient routine blood tests.
Original language | English |
---|---|
Pages (from-to) | 337-347 |
Number of pages | 11 |
Journal | Diagnosis |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - 20 Sept 2023 |