TY - JOUR
T1 - Rubisco production in maize mesophyll cells through ectopic expression of subunits and chaperones
AU - Hotto, Amber M.
AU - Salesse-Smith, Coralie
AU - Lin, Myat
AU - Busch, Florian A.
AU - Simpson, Isabelle
AU - Stern, David B.
N1 - Publisher Copyright:
© 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: [email protected].
PY - 2021/6/22
Y1 - 2021/6/22
N2 - C4 plants, such as maize, strictly compartmentalize Rubisco to bundle sheath chloroplasts. The molecular basis for the restriction of Rubisco from the more abundant mesophyll chloroplasts is not fully understood. Mesophyll chloroplasts transcribe the Rubisco large subunit gene and, when normally quiescent transcription of the nuclear Rubisco small subunit gene family is overcome by ectopic expression, mesophyll chloroplasts still do not accumulate measurable Rubisco. Here we show that a combination of five ubiquitin promoter-driven nuclear transgenes expressed in maize leads to mesophyll accumulation of assembled Rubisco. These encode the Rubisco large and small subunits, Rubisco assembly factors 1 and 2, and the assembly factor Bundle sheath defective 2. In these plants, Rubisco large subunit accumulates in mesophyll cells, and appears to be assembled into a holoenzyme capable of binding the substrate analog CABP (carboxyarabinitol bisphosphate). Isotope discrimination assays suggest, however, that mesophyll Rubisco is not participating in carbon assimilation in these plants, most probably due to a lack of the substrate ribulose 1,5-bisphosphate and/or Rubisco activase. Overall, this work defines a minimal set of Rubisco assembly factors in planta and may help lead to methods of regulating the C4 pathway.
AB - C4 plants, such as maize, strictly compartmentalize Rubisco to bundle sheath chloroplasts. The molecular basis for the restriction of Rubisco from the more abundant mesophyll chloroplasts is not fully understood. Mesophyll chloroplasts transcribe the Rubisco large subunit gene and, when normally quiescent transcription of the nuclear Rubisco small subunit gene family is overcome by ectopic expression, mesophyll chloroplasts still do not accumulate measurable Rubisco. Here we show that a combination of five ubiquitin promoter-driven nuclear transgenes expressed in maize leads to mesophyll accumulation of assembled Rubisco. These encode the Rubisco large and small subunits, Rubisco assembly factors 1 and 2, and the assembly factor Bundle sheath defective 2. In these plants, Rubisco large subunit accumulates in mesophyll cells, and appears to be assembled into a holoenzyme capable of binding the substrate analog CABP (carboxyarabinitol bisphosphate). Isotope discrimination assays suggest, however, that mesophyll Rubisco is not participating in carbon assimilation in these plants, most probably due to a lack of the substrate ribulose 1,5-bisphosphate and/or Rubisco activase. Overall, this work defines a minimal set of Rubisco assembly factors in planta and may help lead to methods of regulating the C4 pathway.
KW - Cphotosynthesis
KW - Rubisco
KW - Rubisco assembly
KW - cell type specificity
KW - maize
UR - http://www.scopus.com/inward/record.url?scp=85109795638&partnerID=8YFLogxK
U2 - 10.1093/jxb/erab189
DO - 10.1093/jxb/erab189
M3 - Article
SN - 0022-0957
VL - 72
SP - 4930
EP - 4937
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
IS - 13
ER -