Saliency-aware geodesic video object segmentation

Wenguan Wang, Jianbing Shen*, Fatih Porikli

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    516 Citations (Scopus)

    Abstract

    We introduce an unsupervised, geodesic distance based, salient video object segmentation method. Unlike traditional methods, our method incorporates saliency as prior for object via the computation of robust geodesic measurement. We consider two discriminative visual features: spatial edges and temporal motion boundaries as indicators of foreground object locations. We first generate framewise spatiotemporal saliency maps using geodesic distance from these indicators. Building on the observation that foreground areas are surrounded by the regions with high spatiotemporal edge values, geodesic distance provides an initial estimation for foreground and background. Then, high-quality saliency results are produced via the geodesic distances to background regions in the subsequent frames. Through the resulting saliency maps, we build global appearance models for foreground and background. By imposing motion continuity, we establish a dynamic location model for each frame. Finally, the spatiotemporal saliency maps, appearance models and dynamic location models are combined into an energy minimization framework to attain both spatially and temporally coherent object segmentation. Extensive quantitative and qualitative experiments on benchmark video dataset demonstrate the superiority of the proposed method over the state-of-the-art algorithms.

    Original languageEnglish
    Title of host publicationIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
    PublisherIEEE Computer Society
    Pages3395-3402
    Number of pages8
    ISBN (Electronic)9781467369640
    DOIs
    Publication statusPublished - 14 Oct 2015
    EventIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States
    Duration: 7 Jun 201512 Jun 2015

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume07-12-June-2015
    ISSN (Print)1063-6919

    Conference

    ConferenceIEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015
    Country/TerritoryUnited States
    CityBoston
    Period7/06/1512/06/15

    Fingerprint

    Dive into the research topics of 'Saliency-aware geodesic video object segmentation'. Together they form a unique fingerprint.

    Cite this