Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network

Yuchao Dai, Jing Zhang, Fatih Porikli, Mingyi He*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    This paper focuses on intelligent photogrammetry deep learning: deep residual method. Salient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, therefore promise a great potential in salient object detection tasks. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise similarity. With the recent emergence of deep learning based approaches, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental evaluations using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% compared with the state-of-the-art methods.

    Original languageEnglish
    Pages (from-to)873-881
    Number of pages9
    JournalActa Geodaetica et Cartographica Sinica
    Volume47
    Issue number6
    DOIs
    Publication statusPublished - Jun 2018

    Fingerprint

    Dive into the research topics of 'Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network'. Together they form a unique fingerprint.

    Cite this