Sample and filter: Nonparametric scene parsing via efficient filtering

Mohammad Najafi, Sarah Taghavi Namin, Mathieu Salzmann, Lars Petersson

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    13 Citations (Scopus)

    Abstract

    Scene parsing has attracted a lot of attention in computer vision. While parametric models have proven effective for this task, they cannot easily incorporate new training data. By contrast, nonparametric approaches, which bypass any learning phase and directly transfer the labels from the training data to the query images, can readily exploit new labeled samples as they become available. Unfortunately, because of the computational cost of their label transfer procedures, state-of-the-art nonparametric methods typically filter out most training images to only keep a few relevant ones to label the query. As such, these methods throw away many images that still contain valuable information and generally obtain an unbalanced set of labeled samples. In this paper, we introduce a nonparametric approach to scene parsing that follows a sample-andfilter strategy. More specifically, we propose to sample labeled superpixels according to an image similarity score, which allows us to obtain a balanced set of samples. We then formulate label transfer as an efficient filtering procedure, which lets us exploit more labeled samples than existing techniques. Our experiments evidence the benefits of our approach over state-of-the-art nonparametric methods on two benchmark datasets.

    Original languageEnglish
    Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    PublisherIEEE Computer Society
    Pages607-615
    Number of pages9
    ISBN (Electronic)9781467388504
    DOIs
    Publication statusPublished - 9 Dec 2016
    Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
    Duration: 26 Jun 20161 Jul 2016

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    Volume2016-December
    ISSN (Print)1063-6919

    Conference

    Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
    Country/TerritoryUnited States
    CityLas Vegas
    Period26/06/161/07/16

    Fingerprint

    Dive into the research topics of 'Sample and filter: Nonparametric scene parsing via efficient filtering'. Together they form a unique fingerprint.

    Cite this