Scalable rule learning via learning representation

Pouya Ghiasnezhad Omran, Kewen Wang, Zhe Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

78 Citations (Scopus)

Abstract

We study the problem of learning first-order rules from large Knowledge Graphs (KGs). With recent advancement in information extraction, vast data repositories in the KG format have been obtained such as Freebase and YAGO. However, traditional techniques for rule learning are not scalable for KGs. This paper presents a new approach RLvLR to learning rules from KGs by using the technique of embedding in representation learning together with a new sampling method. Experimental results show that our system outperforms some state-of-the-art systems. Specifically, for massive KGs with hundreds of predicates and over 10M facts, RLvLR is much faster and can learn much more quality rules than major systems for rule learning in KGs such as AMIE+. We also used the RLvLR-mined rules in an inference module to carry out the link prediction task. In this task, RLvLR outperformed Neural LP, a state-of-the-art link prediction system, in both runtime and accuracy.

Original languageEnglish
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2149-2155
Number of pages7
ISBN (Electronic)9780999241127
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: 13 Jul 201819 Jul 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Conference

Conference27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period13/07/1819/07/18

Fingerprint

Dive into the research topics of 'Scalable rule learning via learning representation'. Together they form a unique fingerprint.

Cite this