TY - GEN
T1 - Scalable rule learning via learning representation
AU - Omran, Pouya Ghiasnezhad
AU - Wang, Kewen
AU - Wang, Zhe
N1 - Publisher Copyright:
© 2018 International Joint Conferences on Artificial Intelligence. All right reserved.
PY - 2018
Y1 - 2018
N2 - We study the problem of learning first-order rules from large Knowledge Graphs (KGs). With recent advancement in information extraction, vast data repositories in the KG format have been obtained such as Freebase and YAGO. However, traditional techniques for rule learning are not scalable for KGs. This paper presents a new approach RLvLR to learning rules from KGs by using the technique of embedding in representation learning together with a new sampling method. Experimental results show that our system outperforms some state-of-the-art systems. Specifically, for massive KGs with hundreds of predicates and over 10M facts, RLvLR is much faster and can learn much more quality rules than major systems for rule learning in KGs such as AMIE+. We also used the RLvLR-mined rules in an inference module to carry out the link prediction task. In this task, RLvLR outperformed Neural LP, a state-of-the-art link prediction system, in both runtime and accuracy.
AB - We study the problem of learning first-order rules from large Knowledge Graphs (KGs). With recent advancement in information extraction, vast data repositories in the KG format have been obtained such as Freebase and YAGO. However, traditional techniques for rule learning are not scalable for KGs. This paper presents a new approach RLvLR to learning rules from KGs by using the technique of embedding in representation learning together with a new sampling method. Experimental results show that our system outperforms some state-of-the-art systems. Specifically, for massive KGs with hundreds of predicates and over 10M facts, RLvLR is much faster and can learn much more quality rules than major systems for rule learning in KGs such as AMIE+. We also used the RLvLR-mined rules in an inference module to carry out the link prediction task. In this task, RLvLR outperformed Neural LP, a state-of-the-art link prediction system, in both runtime and accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85055715499&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2018/297
DO - 10.24963/ijcai.2018/297
M3 - Conference contribution
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 2149
EP - 2155
BT - Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
A2 - Lang, Jerome
PB - International Joint Conferences on Artificial Intelligence
T2 - 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Y2 - 13 July 2018 through 19 July 2018
ER -