Search for circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates

Z. Garai*, G. Zhou, J. Budaj, R. F. Stellingwerf

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    A unique short-period (P = 0.65356(1) d) Mercury-size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum-planetary material-comet-like tail. Close-in exoplanets, like KIC012557548b, are subjected to the greatest planet-star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet-like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet-like tails similar to KIC012557548b and for long-term orbital period variations. We are curious about frequency of comet-like tail formation among short-period Kepler exoplanet candidates. We concentrate on a sample of 20 close-in candidates with a period similar to KIC012557548b from the Kepler mission. We first improved the preliminary orbital periods and obtained the transit light curves. Subsequently we searched for the signatures of a circum-planetary material in these light curves. For this purpose the final transit light curve of each planet was fitted with a theoretical light curve, and the residuals were examined for abnormalities. We then searched for possible long-term changes of the orbital periods using the method of phase dispersion minimization. In 8 cases out of 20 we found some interesting peculiarities, but none of the exoplanet candidates showed signs of a comet-like tail. It seems that the frequency of comet-like tail formation among short-period Kepler exoplanet candidates is very low. We searched for comet-like tails based on the period criterion. Based on our results we can conclude that the short-period criterion is not enough to cause comet-like tail formation. This result is in agreement with the theory of the thermal wind and planet evaporation (Perez-Becker & Chiang 2013). We also found 3 cases of candidates which showed some changes of the orbital period. Based on our results we can see that orbital period changes are not caused by comet-like tail disintegration processes, but rather by possible massive outer companions.

    Original languageEnglish
    Pages (from-to)1018-1036
    Number of pages19
    JournalAstronomische Nachrichten
    Volume335
    Issue number10
    DOIs
    Publication statusPublished - 1 Dec 2014

    Fingerprint

    Dive into the research topics of 'Search for circum-planetary material and orbital period variations of short-period Kepler exoplanet candidates'. Together they form a unique fingerprint.

    Cite this