Abstract
Seasonal variation in δ13C and δ18O of cellulose (δ13Cc and δ18Oc) was measured within two annual rings of Pinus radiata growing at three sites in New Zealand. In general, both δ13Cc and δ18Oc increased to a peak over summer. The three sites differed markedly in annual water balance, and these differences were reflected in δ13Cc and δ18Oc. Average δ13Cc and δ18Oc from each site were positively related, so that the driest site had the most enriched cellulose. δ13Cc and δ18Oc were also related within each site, although both the slope and the closeness of fit of the relationship varied between sites. Supporting the theory, the site with the lowest average relative humidity also had the greatest change in δ18Oc per ‰ change in δ13Cc. Specific climatic events, such as drought or high rainfall, were recorded as a peak or a trough in enrichment, respectively. These results suggest that seasonal and between-site variation in δ13Cc and δ18Oc are driven by the interaction between variation in climatic conditions and soil water availability, and plant response to this variation.
Original language | English |
---|---|
Pages (from-to) | 1483-1499 |
Number of pages | 17 |
Journal | Plant, Cell and Environment |
Volume | 25 |
Issue number | 11 |
DOIs | |
Publication status | Published - Nov 2002 |