TY - JOUR
T1 - Seasonality of foliar respiration in two dominant plant species from the Arctic tundra
T2 - Response to long-term warming and short-term temperature variability
AU - Heskel, Mary A.
AU - Bitterman, Danielle
AU - Atkin, Owen K.
AU - Turnbull, Matthew H.
AU - Griffin, Kevin L.
PY - 2014
Y1 - 2014
N2 - Direct measurements of foliar carbon exchange through the growing season in Arctic species are limited, despite the need for accurate estimates of photosynthesis and respiration to characterise carbon cycling in the tundra. We examined seasonal variation in foliar photosynthesis and respiration (measured at 20°C) in two field-grown tundra species, Betula nana L. and Eriophorum vaginatum L., under ambient and long-term warming (LTW) conditions (+5°C), and the relationship of these fluxes to intraseasonal temperature variability. Species and seasonal timing drove most of the variation in photosynthetic parameters (e.g. gross photosynthesis (Agross)), respiration in the dark (Rdark) and light (Rlight), and foliar nitrogen concentration. LTW did not consistently influence fluxes through the season but reduced respiration in both species. Alongside the flatter respiratory response to measurement temperature in LTW leaves, this provided evidence of thermal acclimation. The inhibition of respiration by light increased by ∼40%, with Rlight?:?Rdark values of ∼0.8 at leaf out decreasing to ∼0.4 after 8 weeks. Though LTW had no effect on inhibition, the cross-taxa seasonal decline in Rlight?:?Rdark greatly reduced respiratory carbon loss. Values of Rlight?:?Agross decreased from ∼0.3 in both species to ∼0.15 (B. nana) and ∼0.05 (E. vaginatum), driven by decreases in respiratory rates, as photosynthetic rates remained stable. The influence of short-term temperature variability did not exhibit predictive trends for leaf gas exchange at a common temperature. These results underscore the influence of temperature on foliar carbon cycling, and the importance of respiration in controlling seasonal carbon exchange.
AB - Direct measurements of foliar carbon exchange through the growing season in Arctic species are limited, despite the need for accurate estimates of photosynthesis and respiration to characterise carbon cycling in the tundra. We examined seasonal variation in foliar photosynthesis and respiration (measured at 20°C) in two field-grown tundra species, Betula nana L. and Eriophorum vaginatum L., under ambient and long-term warming (LTW) conditions (+5°C), and the relationship of these fluxes to intraseasonal temperature variability. Species and seasonal timing drove most of the variation in photosynthetic parameters (e.g. gross photosynthesis (Agross)), respiration in the dark (Rdark) and light (Rlight), and foliar nitrogen concentration. LTW did not consistently influence fluxes through the season but reduced respiration in both species. Alongside the flatter respiratory response to measurement temperature in LTW leaves, this provided evidence of thermal acclimation. The inhibition of respiration by light increased by ∼40%, with Rlight?:?Rdark values of ∼0.8 at leaf out decreasing to ∼0.4 after 8 weeks. Though LTW had no effect on inhibition, the cross-taxa seasonal decline in Rlight?:?Rdark greatly reduced respiratory carbon loss. Values of Rlight?:?Agross decreased from ∼0.3 in both species to ∼0.15 (B. nana) and ∼0.05 (E. vaginatum), driven by decreases in respiratory rates, as photosynthetic rates remained stable. The influence of short-term temperature variability did not exhibit predictive trends for leaf gas exchange at a common temperature. These results underscore the influence of temperature on foliar carbon cycling, and the importance of respiration in controlling seasonal carbon exchange.
KW - Betula nana
KW - Eriophorum vaginatum
KW - Kok effect
KW - photosynthesis
KW - seasonality.
UR - http://www.scopus.com/inward/record.url?scp=84893910737&partnerID=8YFLogxK
U2 - 10.1071/FP13137
DO - 10.1071/FP13137
M3 - Article
SN - 1445-4408
VL - 41
SP - 287
EP - 300
JO - Functional Plant Biology
JF - Functional Plant Biology
IS - 3
ER -