Second flip in the Hassett-Keel program: Existence of good moduli spaces

Jarod Alper, Maksym Fedorchuk, David Ishii Smyth

    Research output: Contribution to journalArticlepeer-review

    21 Citations (Scopus)

    Abstract

    We prove a general criterion for an algebraic stack to admit a good moduli space. This result may be considered as a generalization of the Keel-Mori theorem, which guarantees the existence of a coarse moduli space for a separated Deligne-Mumford stack. We apply this result to prove that the moduli stacks parameterizing-stable curves introduced in [J. Alper et al., Second flip in the Hassett-Keel program: A local description, Compositio Math. 153 (2017), 1547-1583] admit good moduli spaces.

    Original languageEnglish
    Pages (from-to)1584-1609
    Number of pages26
    JournalCompositio Mathematica
    Volume153
    Issue number8
    DOIs
    Publication statusPublished - 1 Aug 2017

    Fingerprint

    Dive into the research topics of 'Second flip in the Hassett-Keel program: Existence of good moduli spaces'. Together they form a unique fingerprint.

    Cite this