TY - JOUR
T1 - Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces
AU - Hofmann, Steve
AU - Mayboroda, Svitlana
AU - McIntosh, Alan
PY - 2011
Y1 - 2011
N2 - Let L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in Lp, Sobolev, and some new Hardy spaces naturally associated to L. First, we show that the known ranges of boundedness in Lp for the heat semigroup and Riesz transform of L, are sharp. In particular, the heat semigroup e-tL need not be bounded in Lp if p ∉ [2n/(n + 2), 2n/(n - 2)]. Then we provide a complete description of all Sobolev spaces in which L admits a bounded functional calculus, in particular, where e-tL is bounded. Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to L, that serves the range of p beyond [2n/(n + 2), 2n/(n - 2)]. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of p), as well as the molecular decomposition and duality and interpolation theorems.
AB - Let L be a second order divergence form elliptic operator with complex bounded measurable coefficients. The operators arising in connection with L, such as the heat semigroup and Riesz transform, are not, in general, of Calderón-Zygmund type and exhibit behavior different from their counterparts built upon the Laplacian. The current paper aims at a thorough description of the properties of such operators in Lp, Sobolev, and some new Hardy spaces naturally associated to L. First, we show that the known ranges of boundedness in Lp for the heat semigroup and Riesz transform of L, are sharp. In particular, the heat semigroup e-tL need not be bounded in Lp if p ∉ [2n/(n + 2), 2n/(n - 2)]. Then we provide a complete description of all Sobolev spaces in which L admits a bounded functional calculus, in particular, where e-tL is bounded. Secondly, we develop a comprehensive theory of Hardy and Lipschitz spaces associated to L, that serves the range of p beyond [2n/(n + 2), 2n/(n - 2)]. It includes, in particular, characterizations by the sharp maximal function and the Riesz transform (for certain ranges of p), as well as the molecular decomposition and duality and interpolation theorems.
UR - http://www.scopus.com/inward/record.url?scp=84861480105&partnerID=8YFLogxK
U2 - 10.24033/asens.2154
DO - 10.24033/asens.2154
M3 - Article
SN - 0012-9593
VL - 44
SP - 723
EP - 800
JO - Annales Scientifiques de l'Ecole Normale Superieure
JF - Annales Scientifiques de l'Ecole Normale Superieure
IS - 5
ER -