TY - GEN
T1 - Secure transmission via transmit antenna selection in MIMO wiretap channels
AU - Yang, Nan
AU - Yeoh, Phee Lep
AU - Elkashlan, Maged
AU - Schober, Robert
AU - Collings, Iain B.
PY - 2012
Y1 - 2012
N2 - We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with multiple antennas at the transmitter, the receiver, and the eavesdropper. We consider the practical scenario of passive eavesdropping, where the transmitter does not have any channel state information (CSI) of the eavesdropper's channel. In the main channel between the transmitter and the receiver, we select a single antenna at the transmitter that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. At the receiver and the eavesdropper, we consider two combining techniques: 1) maximal-ratio combining (MRC) and 2) selection combining (SC). For non-identical Rayleigh fading between the main channel and the eavesdropper's channel, we first derive new closed-form expressions for the exact and asymptotic secrecy outage probabilities. The asymptotic results accurately reveal the secrecy diversity order and the secrecy array gain. Next, we derive new closed-form expressions for the probability of positive secrecy and characterize the ε-outage secrecy capacity. We show that, under TAS/MRC and TAS/SC protocols, the secrecy outage probability approaches zero and the ε-outage secrecy capacity increases with increasing number of transmitter antennas.
AB - We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with multiple antennas at the transmitter, the receiver, and the eavesdropper. We consider the practical scenario of passive eavesdropping, where the transmitter does not have any channel state information (CSI) of the eavesdropper's channel. In the main channel between the transmitter and the receiver, we select a single antenna at the transmitter that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. At the receiver and the eavesdropper, we consider two combining techniques: 1) maximal-ratio combining (MRC) and 2) selection combining (SC). For non-identical Rayleigh fading between the main channel and the eavesdropper's channel, we first derive new closed-form expressions for the exact and asymptotic secrecy outage probabilities. The asymptotic results accurately reveal the secrecy diversity order and the secrecy array gain. Next, we derive new closed-form expressions for the probability of positive secrecy and characterize the ε-outage secrecy capacity. We show that, under TAS/MRC and TAS/SC protocols, the secrecy outage probability approaches zero and the ε-outage secrecy capacity increases with increasing number of transmitter antennas.
UR - http://www.scopus.com/inward/record.url?scp=84877686244&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2012.6503209
DO - 10.1109/GLOCOM.2012.6503209
M3 - Conference contribution
SN - 9781467309219
T3 - Proceedings - IEEE Global Communications Conference, GLOBECOM
SP - 789
EP - 794
BT - 2012 IEEE Global Communications Conference, GLOBECOM 2012
T2 - 2012 IEEE Global Communications Conference, GLOBECOM 2012
Y2 - 3 December 2012 through 7 December 2012
ER -