Sediment controls dynamic behavior of a Cordilleran Ice Stream at the Last Glacial Maximum

Ellen A. Cowan*, Sarah D. Zellers, Juliane Müller, Maureen H. Walczak, Lindsay L. Worthington, Beth E. Caissie, Wesley A. Clary, John M. Jaeger, Sean P.S. Gulick, Jacob W. Pratt, Alan C. Mix, Stewart J. Fallon

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)


    The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat.

    Original languageEnglish
    Article number1826
    JournalNature Communications
    Issue number1
    Publication statusPublished - 1 Dec 2020


    Dive into the research topics of 'Sediment controls dynamic behavior of a Cordilleran Ice Stream at the Last Glacial Maximum'. Together they form a unique fingerprint.

    Cite this