Segregation of the photosystems in higher plant thylakoids and short- and long-term regulation by a mesoscopic approach

Andrei Borodich*, Igor Rojdestvenski, Michael Cottam, Jan Anderson, Gunnar Öquist

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)

    Abstract

    In this paper we consider the relationship between the lateral segregation of photosystems I and II in the grana and characteristics of the short- and long-term regulation in thylakoids following the mesoscopic approach. Our study is thermodynamic; it is based on the Flory-Huggins theory for binary mixtures and the McMillan-Mayer theory of heterogeneous solutions. We demonstrate that state transitions promote rearrangement of photosystems by either favoring their mixing after LHCII phosphorylation or enhancing their segregation after LHCII dephosphorylation. This regulation influences the entire system properties locally. We also demonstrate that the variations of the photosystem ratio promote rearrangement of the photosystems preserving their segregation. This regulation influences the entire system properties globally. The studies presented are another indication of the importance of the segregation of the photosystems in the grana thylakoids of higher plants. Segregation of PSIs and PSIIs is a signature of the spinodal decomposition, which is a fine regulatory mechanism, related to both the short- and long-term adaptations of the photosynthetic apparatus in higher plant thylakoids.

    Original languageEnglish
    Pages (from-to)431-441
    Number of pages11
    JournalJournal of Theoretical Biology
    Volume225
    Issue number4
    DOIs
    Publication statusPublished - 21 Dec 2003

    Fingerprint

    Dive into the research topics of 'Segregation of the photosystems in higher plant thylakoids and short- and long-term regulation by a mesoscopic approach'. Together they form a unique fingerprint.

    Cite this