TY - JOUR
T1 - Seismic event location
T2 - Nonlinear inversion using a Neighborhood Algorithm
AU - Sambridge, M. S.
AU - Kennett, B. L.N.
PY - 2001
Y1 - 2001
N2 - A recently developed direct search method for inversion, known as a neighbourhood algorithm (NA), is applied to the hypocentre location problem. Like some previous methods the algorithm uses randomised, or stochastic, sampling of a four-dimensional hypocentral parameter space, to search for solutions with acceptable data fit. Considerable flexibility is allowed in the choice of misfit measure. At each stage the hypocentral parameter space is partitioned into a series of convex polygons called Voronoi cells. Each cell surrounds a previously generated hypocentre for which the fit to the data has been determined. As the algorithm proceeds new hypocentres are randomly generated in the neighbourhood of those hypocentres with smaller data misfit. In this way all previous hypocentres guide the search, and the more promising regions of parameter space are preferentially sampled. The NA procedure makes use of just two tuning parameters. It is possible to choose their values so that the behaviour of the algorithm is similar to that of a contracting irregular grid in 4-D. This is the feature of the algorithm that we exploit for hypocentre location. In experiments with different events and data sources, the NA approach is able to achieve comparable or better levels of data fit than a range of alternative methods; linearised least-squares, genetic algorithms, simulated annealing and a contracting grid scheme. Moreover, convergence was achieved with a substantially reduced number of travel-time/slowness calculations compared with other nonlinear inversion techniques. Even when initial parameter bounds are very loose, the NA procedure produced robust convergence with acceptable levels of data fit.
AB - A recently developed direct search method for inversion, known as a neighbourhood algorithm (NA), is applied to the hypocentre location problem. Like some previous methods the algorithm uses randomised, or stochastic, sampling of a four-dimensional hypocentral parameter space, to search for solutions with acceptable data fit. Considerable flexibility is allowed in the choice of misfit measure. At each stage the hypocentral parameter space is partitioned into a series of convex polygons called Voronoi cells. Each cell surrounds a previously generated hypocentre for which the fit to the data has been determined. As the algorithm proceeds new hypocentres are randomly generated in the neighbourhood of those hypocentres with smaller data misfit. In this way all previous hypocentres guide the search, and the more promising regions of parameter space are preferentially sampled. The NA procedure makes use of just two tuning parameters. It is possible to choose their values so that the behaviour of the algorithm is similar to that of a contracting irregular grid in 4-D. This is the feature of the algorithm that we exploit for hypocentre location. In experiments with different events and data sources, the NA approach is able to achieve comparable or better levels of data fit than a range of alternative methods; linearised least-squares, genetic algorithms, simulated annealing and a contracting grid scheme. Moreover, convergence was achieved with a substantially reduced number of travel-time/slowness calculations compared with other nonlinear inversion techniques. Even when initial parameter bounds are very loose, the NA procedure produced robust convergence with acceptable levels of data fit.
KW - Event location
KW - Hypocentre
KW - Neighbourhood algorithm
UR - http://www.scopus.com/inward/record.url?scp=0035091360&partnerID=8YFLogxK
M3 - Article
SN - 0033-4553
VL - 158
SP - 241
EP - 257
JO - Pure and Applied Geophysics
JF - Pure and Applied Geophysics
IS - 1-2
ER -