TY - JOUR
T1 - Selecting accreted populations
T2 - Metallicity, elemental abundances, and ages of the Gaia-Sausage-Enceladus and Sequoia populations
AU - Feuillet, Diane K.
AU - Sahlholdt, Christian L.
AU - Feltzing, Sofia
AU - Casagrande, Luca
N1 - Publisher Copyright:
© 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Identifying stars found in the Milky Way as having formed in situ or accreted can be a complex and uncertain undertaking. We use Gaia kinematics and APOGEE elemental abundances to select stars belonging to the Gaia-Sausage-Enceladus (GSE) and Sequoia accretion events. These samples are used to characterize the GSE and Sequoia population metallicity distribution functions, elemental abundance patterns, age distributions, and progenitor masses. We find that the GSE population has a mean [Fe/H] ∼-1.15 and a mean age of 10-12 Gyr. GSE has a single sequence in [Mg/Fe] versus [Fe/H] consistent with the onset of SN Ia Fe contributions and uniformly low [Al/Fe] of ∼-0.25 dex. The derived properties of the Sequoia population are strongly dependent on the kinematic selection. We argue the selection with the least contamination is Jφ/Jtot < -0.6 and (Jz - JR)/Jtot < 0.1. This results in a mean [Fe/H] ∼-1.3 and a mean age of 12-14 Gyr. The Sequoia population has a complex elemental abundance distribution with mainly high-[Mg/Fe] stars. We use the GSE [Al/Fe] versus [Mg/H] abundance distribution to inform a chemically based selection of accreted stars, which is used to remove possible contaminant stars from the GSE and Sequoia samples.
AB - Identifying stars found in the Milky Way as having formed in situ or accreted can be a complex and uncertain undertaking. We use Gaia kinematics and APOGEE elemental abundances to select stars belonging to the Gaia-Sausage-Enceladus (GSE) and Sequoia accretion events. These samples are used to characterize the GSE and Sequoia population metallicity distribution functions, elemental abundance patterns, age distributions, and progenitor masses. We find that the GSE population has a mean [Fe/H] ∼-1.15 and a mean age of 10-12 Gyr. GSE has a single sequence in [Mg/Fe] versus [Fe/H] consistent with the onset of SN Ia Fe contributions and uniformly low [Al/Fe] of ∼-0.25 dex. The derived properties of the Sequoia population are strongly dependent on the kinematic selection. We argue the selection with the least contamination is Jφ/Jtot < -0.6 and (Jz - JR)/Jtot < 0.1. This results in a mean [Fe/H] ∼-1.3 and a mean age of 12-14 Gyr. The Sequoia population has a complex elemental abundance distribution with mainly high-[Mg/Fe] stars. We use the GSE [Al/Fe] versus [Mg/H] abundance distribution to inform a chemically based selection of accreted stars, which is used to remove possible contaminant stars from the GSE and Sequoia samples.
KW - Galaxy: abundances
KW - Galaxy: formation
KW - Galaxy: halo
KW - Galaxy: kinematics and dynamics
KW - Galaxy: stellar content
UR - http://www.scopus.com/inward/record.url?scp=85118182461&partnerID=8YFLogxK
U2 - 10.1093/mnras/stab2614
DO - 10.1093/mnras/stab2614
M3 - Article
SN - 0035-8711
VL - 508
SP - 1489
EP - 1508
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -