TY - JOUR
T1 - Self-assembly of noble metal-free graphene-copper plasmonic metasurfaces
AU - Di Bernardo, Iolanda
AU - Bradford, Jonathan
AU - Fusco, Zelio
AU - Mendoza, Jireh
AU - Tran-Phu, Thanh
AU - Bo, Renheng
AU - Motta, Nunzio
AU - Tricoli, Antonio
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2020.
PY - 2020/9/14
Y1 - 2020/9/14
N2 - The strong light confinement and near field enhancement by metallic scatters enabled the development of a large family of plasmonic-based technologies, including broadly used gold metasurfaces. Despite progress, the engineering of non-precious metal plasmonic devices remains challenging, due to the limited chemical stability of most nanostructured metals. Here, we report the preparation of earth-abundant plasmonic metasurfaces by the engineering of copper-graphene nano-resonators, and their use as localized surface plasmon resonance (LSPR) sensors. We achieve the large-scale self-assembly of Cu nanocrystals, featuring a protective graphene film, by one-step reduction of CuO nanoparticle networks in a hydrocarbon-containing atmosphere. Microscopic and spectroscopic investigations reveal that coalescence and reduction of the CuO nanoparticles during graphene growth result in the formation of graphene-encapsulated metallic Cu nano-islands (NIs). These Cu-graphene metasurfaces can detect down to 1% concentrations of toluene gas at room temperature, displaying a reproducible and rapid LSPR shift of 0.2 nm. Finite-difference time-domain (FDTD) simulation and structural characterization reveal that the graphene layer significantly improves the Cu crystals’ long-term stability, leading to a prolonged LSPR performance over periods of three months. These insights provide promising directions for the development of earth-abundant plasmonic materials with applications ranging from biosensing to photo-catalysis and other optoelectronic devices.
AB - The strong light confinement and near field enhancement by metallic scatters enabled the development of a large family of plasmonic-based technologies, including broadly used gold metasurfaces. Despite progress, the engineering of non-precious metal plasmonic devices remains challenging, due to the limited chemical stability of most nanostructured metals. Here, we report the preparation of earth-abundant plasmonic metasurfaces by the engineering of copper-graphene nano-resonators, and their use as localized surface plasmon resonance (LSPR) sensors. We achieve the large-scale self-assembly of Cu nanocrystals, featuring a protective graphene film, by one-step reduction of CuO nanoparticle networks in a hydrocarbon-containing atmosphere. Microscopic and spectroscopic investigations reveal that coalescence and reduction of the CuO nanoparticles during graphene growth result in the formation of graphene-encapsulated metallic Cu nano-islands (NIs). These Cu-graphene metasurfaces can detect down to 1% concentrations of toluene gas at room temperature, displaying a reproducible and rapid LSPR shift of 0.2 nm. Finite-difference time-domain (FDTD) simulation and structural characterization reveal that the graphene layer significantly improves the Cu crystals’ long-term stability, leading to a prolonged LSPR performance over periods of three months. These insights provide promising directions for the development of earth-abundant plasmonic materials with applications ranging from biosensing to photo-catalysis and other optoelectronic devices.
UR - http://www.scopus.com/inward/record.url?scp=85090268265&partnerID=8YFLogxK
U2 - 10.1039/d0tc02848g
DO - 10.1039/d0tc02848g
M3 - Article
SN - 2050-7526
VL - 8
SP - 11896
EP - 11905
JO - Journal of Materials Chemistry C
JF - Journal of Materials Chemistry C
IS - 34
ER -