Semantic context and depth-aware object proposal generation

Haoyang Zhang, Xuming He, Fatih Porikli, Laurent Kneip

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    1 Citation (Scopus)

    Abstract

    This paper presents a context-aware object proposal generation method for stereo images. Unlike existing methods which mostly rely on image-based or depth features to generate object candidates, we propose to incorporate additional geometric and high-level semantic context information into the proposal generation. Our method starts from an initial object proposal set, and encode objectness for each proposal using three types of features, including a CNN feature, a geometric feature computed from dense depth map, and a semantic context feature from pixel-wise scene labeling. We then train an efficient random forest classifier to re-rank the initial proposals and a set of linear regressors to fine-tune the location of each proposal. Experiments on the KITTI dataset show our approach significantly improves the quality of the initial proposals and achieves the state-of-the-art performance using only a fraction of original object candidates.

    Original languageEnglish
    Title of host publication2016 IEEE International Conference on Image Processing, ICIP 2016 - Proceedings
    PublisherIEEE Computer Society
    Pages1-5
    Number of pages5
    ISBN (Electronic)9781467399616
    DOIs
    Publication statusPublished - 3 Aug 2016
    Event23rd IEEE International Conference on Image Processing, ICIP 2016 - Phoenix, United States
    Duration: 25 Sept 201628 Sept 2016

    Publication series

    NameProceedings - International Conference on Image Processing, ICIP
    Volume2016-August
    ISSN (Print)1522-4880

    Conference

    Conference23rd IEEE International Conference on Image Processing, ICIP 2016
    Country/TerritoryUnited States
    CityPhoenix
    Period25/09/1628/09/16

    Fingerprint

    Dive into the research topics of 'Semantic context and depth-aware object proposal generation'. Together they form a unique fingerprint.

    Cite this