Semi-dense 3D Reconstruction with a Stereo Event Camera

Yi Zhou*, Guillermo Gallego, Henri Rebecq, Laurent Kneip, Hongdong Li, Davide Scaramuzza

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    36 Citations (Scopus)

    Abstract

    Event cameras are bio-inspired sensors that offer several advantages, such as low latency, high-speed and high dynamic range, to tackle challenging scenarios in computer vision. This paper presents a solution to the problem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Localization and Mapping. The proposed method consists of the optimization of an energy function designed to exploit small-baseline spatio-temporal consistency of events triggered across both stereo image planes. To improve the density of the reconstruction and to reduce the uncertainty of the estimation, a probabilistic depth-fusion strategy is also developed. The resulting method has no special requirements on either the motion of the stereo event-camera rig or on prior knowledge about the scene. Experiments demonstrate our method can deal with both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event data image representations.

    Original languageEnglish
    Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
    EditorsMartial Hebert, Vittorio Ferrari, Cristian Sminchisescu, Yair Weiss
    PublisherSpringer Verlag
    Pages242-258
    Number of pages17
    ISBN (Print)9783030012458
    DOIs
    Publication statusPublished - 2018
    Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
    Duration: 8 Sept 201814 Sept 2018

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11205 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference15th European Conference on Computer Vision, ECCV 2018
    Country/TerritoryGermany
    CityMunich
    Period8/09/1814/09/18

    Fingerprint

    Dive into the research topics of 'Semi-dense 3D Reconstruction with a Stereo Event Camera'. Together they form a unique fingerprint.

    Cite this