Senescence and defense pathways contribute to heterosis

Rebeca Gonzalez-Bayon, Yifei Shen, Michael Groszmann, Anyu Zhu, Aihua Wang, Annapurna D. Allu, Elizabeth S. Dennis, W. James Peacock, Ian K. Greaves*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Hybrids are used extensively in agriculture due to their superior performance in seed yield and plant growth, yet the molecular mechanisms underpinning hybrid performance are not well understood. Recent evidence has suggested that a decrease in basal defense response gene expression regulated by reduced levels of salicylic acid (SA) may be important for vigor in certain hybrid combinations. Decreasing levels of SA in the Arabidopsis (Arabidopsis thaliana) accession C24 through the introduction of the SA catabolic enzyme salicylate1 hydroxylase (NahG) increases plant size, phenocopying the large-sized C24/Landsberg erecta (Ler) F1 hybrids. C24♀ 3 Ler♂ F1 hybrids and C24 NahG lines shared differentially expressed genes and pathways associated with plant defense and leaf senescence including decreased expression of SA biosynthetic genes and SA response genes. The expression of TL1 BINDING TRANSCRIPTION FACTOR1, a key regulator in resource allocation between growth and defense, was decreased in both the F1 hybrid and the C24 NahG lines, which may promote growth. Both C24 NahG lines and the F1 hybrids showed decreased expression of the key senescence-associated transcription factors WRKY53, NAC-CONTAINING PROTEIN29, and ORESARA1 with a delayed onset of senescence compared to C24 plants. The delay in senescence resulted in an extension of the photosynthetic period in the leaves of F1 hybrids compared to the parental lines, potentially allowing each leaf to contribute more resources toward growth.

Original languageEnglish
Pages (from-to)240-252
Number of pages13
JournalPlant Physiology
Volume180
Issue number1
DOIs
Publication statusPublished - May 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Senescence and defense pathways contribute to heterosis'. Together they form a unique fingerprint.

Cite this