TY - JOUR
T1 - Separable monoids in Dqc(X)
AU - Neeman, Amnon
N1 - Publisher Copyright:
© 2015 De Gruyter.
PY - 2015
Y1 - 2015
N2 - Suppose (T, ⊗, 1) is a tensor triangulated category. In a number of recent articles Balmer defines and explores the notion of "separable tt-rings" in T (in this paper we will call them "separable monoids"). The main result of this article is that, if T is the derived quasicoherent category of a noetherian scheme X, then the only separable monoids are the pushforwards by étale maps of smashing Bousfield localizations of the structure sheaf.
AB - Suppose (T, ⊗, 1) is a tensor triangulated category. In a number of recent articles Balmer defines and explores the notion of "separable tt-rings" in T (in this paper we will call them "separable monoids"). The main result of this article is that, if T is the derived quasicoherent category of a noetherian scheme X, then the only separable monoids are the pushforwards by étale maps of smashing Bousfield localizations of the structure sheaf.
UR - http://www.scopus.com/inward/record.url?scp=84990192298&partnerID=8YFLogxK
U2 - 10.1515/crelle-2015-0039
DO - 10.1515/crelle-2015-0039
M3 - Article
SN - 0075-4102
VL - 2015
SP - 237
EP - 280
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
ER -