TY - GEN
T1 - Set augmented triplet loss for video person re-identification
AU - Fang, Pengfei
AU - Ji, Pan
AU - Petersson, Lars
AU - Harandi, Mehrtash
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/1
Y1 - 2021/1
N2 - Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few frame features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.
AB - Modern video person re-identification (re-ID) machines are often trained using a metric learning approach, supervised by a triplet loss. The triplet loss used in video re-ID is usually based on so-called clip features, each aggregated from a few frame features. In this paper, we propose to model the video clip as a set and instead study the distance between sets in the corresponding triplet loss. In contrast to the distance between clip representations, the distance between clip sets considers the pair-wise similarity of each element (i.e., frame representation) between two sets. This allows the network to directly optimize the feature representation at a frame level. Apart from the commonly-used set distance metrics (e.g., ordinary distance and Hausdorff distance), we further propose a hybrid distance metric, tailored for the set-aware triplet loss. Also, we propose a hard positive set construction strategy using the learned class prototypes in a batch. Our proposed method achieves state-of-the-art results across several standard benchmarks, demonstrating the advantages of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85116084281&partnerID=8YFLogxK
U2 - 10.1109/WACV48630.2021.00051
DO - 10.1109/WACV48630.2021.00051
M3 - Conference contribution
T3 - Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
SP - 464
EP - 473
BT - Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021
Y2 - 5 January 2021 through 9 January 2021
ER -