Shape classification through structured learning of matching measures

Longbin Chen*, Julian J. Mcauley, Rogerio S. Feris, Tibé S. Caetano, Matthew Turk

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    12 Citations (Scopus)

    Abstract

    University of California Santa Barbara, CA, 93117, Many traditional methods for shape classification involve establishing point correspondences between shapes to produce matching scores, which are in turn used as similarity measures for classification. Learning techniques have been applied only in the second stage of this process, after the matching scores have been obtained. In this paper, instead of simply taking for granted the scores obtained by matching and then learning a classifier, we learn the matching scores themselves so as to produce shape similarity scores that minimize the classification loss. The solution is based on a max-margin formulation in the structured prediction setting. Experiments in shape databases reveal that such an integrated learning algorithm substantially improves on existing methods.

    Original languageEnglish
    Title of host publication2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009
    PublisherIEEE Computer Society
    Pages365-372
    Number of pages8
    ISBN (Print)9781424439935
    DOIs
    Publication statusPublished - 2009
    Event2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 - Miami, FL, United States
    Duration: 20 Jun 200925 Jun 2009

    Publication series

    Name2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009

    Conference

    Conference2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
    Country/TerritoryUnited States
    CityMiami, FL
    Period20/06/0925/06/09

    Fingerprint

    Dive into the research topics of 'Shape classification through structured learning of matching measures'. Together they form a unique fingerprint.

    Cite this