TY - JOUR
T1 - Shared reproductive disruption, not neural crest or tameness, explains the domestication syndrome
AU - Gleeson, Ben Thomas
AU - Wilson, Laura A.B.
N1 - Publisher Copyright:
© 2023 The Authors.
PY - 2023/3/29
Y1 - 2023/3/29
N2 - Altered neural crest cell (NCC) behaviour is an increasingly cited explanation for the domestication syndrome in animals. However, recent authors have questioned this explanation, while others cast doubt on whether domestication syndrome even exists. Here, we review published literature concerning this syndrome and the NCC hypothesis, together with recent critiques of both. We synthesize these contributions and propose a novel interpretation, arguing shared trait changes under ancient domestication resulted primarily from shared disruption of wild reproductive regimes. We detail four primary selective pathways for 'reproductive disruption' under domestication and contrast these succinct and demonstrable mechanisms with cryptic genetic associations posited by the NCC hypothesis. In support of our perspective, we illustrate numerous important ways in which NCCs contribute to vertebrate reproductive phenotypes, and argue it is not surprising that features derived from these cells would be coincidentally altered under major selective regime changes, as occur in domestication. We then illustrate several pertinent examples of Darwin's 'unconscious selection' in action, and compare applied selection and phenotypic responses in each case. Lastly, we explore the ramifications of reproductive disruption for wider evolutionary discourse, including links to wild 'self-domestication' and 'island effect', and discuss outstanding questions.
AB - Altered neural crest cell (NCC) behaviour is an increasingly cited explanation for the domestication syndrome in animals. However, recent authors have questioned this explanation, while others cast doubt on whether domestication syndrome even exists. Here, we review published literature concerning this syndrome and the NCC hypothesis, together with recent critiques of both. We synthesize these contributions and propose a novel interpretation, arguing shared trait changes under ancient domestication resulted primarily from shared disruption of wild reproductive regimes. We detail four primary selective pathways for 'reproductive disruption' under domestication and contrast these succinct and demonstrable mechanisms with cryptic genetic associations posited by the NCC hypothesis. In support of our perspective, we illustrate numerous important ways in which NCCs contribute to vertebrate reproductive phenotypes, and argue it is not surprising that features derived from these cells would be coincidentally altered under major selective regime changes, as occur in domestication. We then illustrate several pertinent examples of Darwin's 'unconscious selection' in action, and compare applied selection and phenotypic responses in each case. Lastly, we explore the ramifications of reproductive disruption for wider evolutionary discourse, including links to wild 'self-domestication' and 'island effect', and discuss outstanding questions.
KW - animal domestication
KW - island effect
KW - neural crest cell hypothesis
KW - self-domestication
KW - unconscious selection
UR - http://www.scopus.com/inward/record.url?scp=85150765700&partnerID=8YFLogxK
U2 - 10.1098/rspb.2022.2464
DO - 10.1098/rspb.2022.2464
M3 - Review article
SN - 0962-8452
VL - 290
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 1995
M1 - 20222464
ER -