Short-Time Existence

Ben Andrews*, Christopher Hopper

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

Abstract

An important foundational step in the study of any system of evolutionary partial differential equations is to show short-time existence and uniqueness. For the Ricci flow, unfortunately, short-time existence does not follow from standard parabolic theory, since the flow is only weakly parabolic. To overcome this, Hamilton's seminal paper [Ham82b] employed the deep Nash –Moser implicit function theorem to prove short-time existence and uni- queness. A detailed exposition of this result and its applications can be found in Hamilton's survey [Ham82a]. DeTurck [DeT83]later found a more direct proof by modifying the flow by a time-dependent change of variables to make it parabolic. It is this method that we will follow.

Original languageEnglish
Title of host publicationThe Ricci Flow in Riemannian Geometry
Subtitle of host publicationA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem
PublisherSpringer Verlag
Pages83-95
Number of pages13
ISBN (Print)9783642159664
DOIs
Publication statusPublished - 2011

Publication series

NameLecture Notes in Mathematics
Volume2011
ISSN (Print)0075-8434
ISSN (Electronic)1617-9692

Fingerprint

Dive into the research topics of 'Short-Time Existence'. Together they form a unique fingerprint.

Cite this