SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits

Karen Lund*, John N. Aleinikoff, Karl V. Evans, C. Mark Fanning

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    181 Citations (Scopus)

    Abstract

    In central Idaho roof pendants, a northwest-trending belt of metamorphosed strata, correlative with the Windermere Supergroup, links northern and southern segments of the western Laurentia Neoproterozoic rift belt. Nine newly named formations within the Gospel Peaks sequence-A through Gospel Peaks sequence-D record Cryogenian preglacial, rift-glacial, and postglacial events as well as Neoproterozoic III glacial and rift events. The Edwardsburg Formation of Gospel Peaks sequence B includes interfingered bimodal rift-related volcanic and glaciogenic diamictite strata. Zircons from a rhyodacite flow in the lower Edwardsburg Formation and from a rhyolite flow at its top, dated by using the sensitive high-resolution ion microprobe (SHRIMP), yielded a weighted average of 685 ± 7 Ma and 684 ± 4 Ma. Reevaluation of geochronology and correlations indicates that Cryogenian rifting may have been (1) protracted between 780 and 685 Ma, (2) diachronous along the Cordillera, and/or (3) stepwise with a Cordilleran-wide event at ca. 685 Ma that initiated the formation of the Cordilleran miogeocline and set its geometry. Reevaluation of the Cryogenian glacial record indicates that (1) two associated ca. 685 Ma glacial intervals in the Edwardsburg Formation correlate with the Rapitan glaciation, (2) the Sturtian snowball Earth event must be reevaluated on the basis of revision of Rapitan glaciation from 750-700 Ma to ca. 685 Ma, and (3) there were older Cryogenian glaciations or Cryogenian glaciations were not globally synchronous. New dates and correlations significantly impact the number and synchroneity of possible snowball Earth events and the paleolatitudes of Cryogenian glaciations. Western Laurentian events at ca. 685 Ma particularily affect Neoproterozoic paleocontinental reconstructions by indicating diachronous and multi step breakup of supercontinent Rodinia.

    Original languageEnglish
    Pages (from-to)349-372
    Number of pages24
    JournalBulletin of the Geological Society of America
    Volume115
    Issue number3
    DOIs
    Publication statusPublished - Mar 2003

    Fingerprint

    Dive into the research topics of 'SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits'. Together they form a unique fingerprint.

    Cite this