Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts

M. Zelenski, V. S. Kamenetsky*, J. A. Mavrogenes, A. A. Gurenko, L. V. Danyushevsky

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    42 Citations (Scopus)

    Abstract

    Silicate-sulfide liquid immiscibility plays a key role in the formation of magmatic sulfide ore deposits but incipient sulfide melts are rarely preserved in natural rocks. This study presents the distribution and compositions of olivine-hosted sulfide melt globules resulting from silicate-sulfide liquid immiscibility in primitive arc basalts. Abundant sulfide droplets entrapped in olivine from primitive basalts of the 1941 eruption and pre-historic eruptive cone “Mt. 1004” of the Tolbachik volcano, Kurile-Kamchatka arc. Inclusions range from submicron to 250 μm in size, coexist with sulfur-rich glass (≤ 1.1 wt% S), and, in some cases, with magmatic anhydrite. Saturation in sulfide occurred early in the evolution of a water- and sulfur-rich magma, moderately oxidized (QFM + 1 to +1.5), which crystallized high-Mg olivine (Fo86–92), clinopyroxene and Cr-spinel. The process developed dense “clouds” of sulfide in relatively small volumes of magma, with highly variable abundances of chalcophile metals. The low degree of sulfide supersaturation promoted diffusive equilibration of the growing droplets with the melt in Ni and Cu, resulting in high concentrations (≈ 38 mol%) of CuS and NiS in the earliest sulfide liquids. The Tolbachik samples provide a glimpse into deep arc processes not seen elsewhere, and may show how arc magmas, despite their oxidized nature, saturate in sulfide.

    Original languageEnglish
    Pages (from-to)102-111
    Number of pages10
    JournalChemical Geology
    Volume478
    DOIs
    Publication statusPublished - 5 Feb 2018

    Fingerprint

    Dive into the research topics of 'Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts'. Together they form a unique fingerprint.

    Cite this