Abstract
Silicon quantum dot (Si QD) solar cells offer the potential to tune the effective band gap, through quantum confinement, and allow fabrication of optimised tandem devices in one growth run in a thin film process. Previous work in our group has shown how such cells can be fabricated by sputtering of thin layers of silicon rich oxide sandwiched between a stoichiometric oxide that on annealing crystallise to form Si QDs of uniform and controllable size. Doping multilayers with P and B allows formation of a rectifying junction with an effective band gap of 1.8eV, which can give an open circuit voltage (VOC) of almost 500mV. However, the doping behaviour of P and B in these QD materials is not well understood. In addition P and B have big but opposite effects on QD crystallisation, with P (B) forming larger (smaller) QDs than for undoped material. Two possible models for the doping mechanisms in these materials are explored: one relying on doping of a sub-oxide region around the Si QDs and the other based on the differing nucleation effects of P and B. In addition initial results on heterointerfaces in the QD superstructure are assessed as a means to improve vertical current transport, and the effects of hydrogenation on improving VOC by passivating defects. Routes to incorporating these explanations for doping and other structural improvements are discussed as means of optimising the performance of these Si QD cells.
Original language | English |
---|---|
Pages | 182-190 |
Number of pages | 9 |
DOIs | |
Publication status | Published - 10 Sept 2010 |
Externally published | Yes |
Event | 25th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC)/5th World Conference on Photovoltaic Energy Conversion (WCPEC-5) - Valencia, Spain Duration: 1 Jan 2010 → … |
Conference
Conference | 25th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC)/5th World Conference on Photovoltaic Energy Conversion (WCPEC-5) |
---|---|
Country/Territory | Spain |
City | Valencia |
Period | 1/01/10 → … |