TY - GEN
T1 - Simulating Content Consistent Vehicle Datasets with Attribute Descent
AU - Yao, Yue
AU - Zheng, Liang
AU - Yang, Xiaodong
AU - Naphade, Milind
AU - Gedeon, Tom
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - This paper uses a graphic engine to simulate a large amount of training data with free annotations. Between synthetic and real data, there is a two-level domain gap, i.e., content level and appearance level. While the latter has been widely studied, we focus on reducing the content gap in attributes like illumination and viewpoint. To reduce the problem complexity, we choose a smaller and more controllable application, vehicle re-identification (re-ID). We introduce a large-scale synthetic dataset VehicleX. Created in Unity, it contains 1,362 vehicles of various 3D models with fully editable attributes. We propose an attribute descent approach to let VehicleX approximate the attributes in real-world datasets. Specifically, we manipulate each attribute in VehicleX, aiming to minimize the discrepancy between VehicleX and real data in terms of the Fréchet Inception Distance (FID). This attribute descent algorithm allows content domain adaptation (DA) orthogonal to existing appearance DA methods. We mix the optimized VehicleX data with real-world vehicle re-ID datasets, and observe consistent improvement. With the augmented datasets, we report competitive accuracy. We make the dataset, engine and our codes available at https://github.com/yorkeyao/VehicleX.
AB - This paper uses a graphic engine to simulate a large amount of training data with free annotations. Between synthetic and real data, there is a two-level domain gap, i.e., content level and appearance level. While the latter has been widely studied, we focus on reducing the content gap in attributes like illumination and viewpoint. To reduce the problem complexity, we choose a smaller and more controllable application, vehicle re-identification (re-ID). We introduce a large-scale synthetic dataset VehicleX. Created in Unity, it contains 1,362 vehicles of various 3D models with fully editable attributes. We propose an attribute descent approach to let VehicleX approximate the attributes in real-world datasets. Specifically, we manipulate each attribute in VehicleX, aiming to minimize the discrepancy between VehicleX and real data in terms of the Fréchet Inception Distance (FID). This attribute descent algorithm allows content domain adaptation (DA) orthogonal to existing appearance DA methods. We mix the optimized VehicleX data with real-world vehicle re-ID datasets, and observe consistent improvement. With the augmented datasets, we report competitive accuracy. We make the dataset, engine and our codes available at https://github.com/yorkeyao/VehicleX.
KW - Domain adaptation
KW - Synthetic data
KW - Vehicle retrieval
UR - http://www.scopus.com/inward/record.url?scp=85097405899&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-58539-6_46
DO - 10.1007/978-3-030-58539-6_46
M3 - Conference contribution
SN - 9783030585389
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 775
EP - 791
BT - Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
A2 - Vedaldi, Andrea
A2 - Bischof, Horst
A2 - Brox, Thomas
A2 - Frahm, Jan-Michael
PB - Springer Science and Business Media Deutschland GmbH
T2 - 16th European Conference on Computer Vision, ECCV 2020
Y2 - 23 August 2020 through 28 August 2020
ER -