Simultaneous suppression of forward and backward light scattering by high-index nanoparticles based on Kerker-like effects

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, P. Belov, A. Karabchevsky, A. B. Evlyukhin, Y. Kivshar, A. S. Shalin

    Research output: Contribution to journalConference articlepeer-review

    Abstract

    The ability of all-dielectric nanostructures to perform exotic photonics effects is with superior efficiency compared to their metallic counterparts. Free from joules losses, high-index dielectrics support comparable excitation of electric and magnetic resonances and pave a way to advanced technologies of light energy manipulation. One of the most important effects is directive light scattering provided by the Kerker and anti-Kerker effects giving the potential to realize Huygens source of light, transparent metasurfaces, router nanoantennas etc. Here we study an effect where most of the scattered power is redirected to the side directions rather than to the forward and/or backward directions. This kind of scattering on isotropic scatterer requires at least the presence of the first two orders of multipoles to enable simultaneous forward and back-scattering suppressions. Electric dipole Fano resonance profile and quadrupoles off-resonance characteristics provide the required phase and amplitude conditions to obtain such an optical signature. We find the individual scatterers sustain the transverse scattering conditions when assembled into a metasurface so exhibit invisibility effect. We investigate this phenomenon analytically and numerically in the visible and microwave domains and provide the proof-of-the-concept experiment in the gigahertz frequency and showing very good agreement with the theoretical predictions.

    Original languageEnglish
    Article number012158
    JournalJournal of Physics: Conference Series
    Volume1461
    Issue number1
    DOIs
    Publication statusPublished - 23 Apr 2020
    Event4th International Conference on Metamaterials and Nanophotonics, METANANO 2019 - St. Petersburg, Russian Federation
    Duration: 15 Jul 201919 Jul 2019

    Fingerprint

    Dive into the research topics of 'Simultaneous suppression of forward and backward light scattering by high-index nanoparticles based on Kerker-like effects'. Together they form a unique fingerprint.

    Cite this