TY - JOUR
T1 - Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis
AU - Righettoni, Marco
AU - Tricoli, Antonio
AU - Pratsinis, Sotiris E.
PY - 2010/5/1
Y1 - 2010/5/1
N2 - Acetone in the human breath is an important marker for noninvasive diagnosis of diabetes. Here, novel chemo-resistive detectors have been developed that allow rapid measurement of ultralow acetone concentrations (down to 20 ppb) with high signal-to-noise ratio in ideal (dry air) and realistic (up to 90% RH) conditions. The detector films consist of (highly sensitive) pure and Si-doped WO3 nanoparticles (10-13 nm in diameter) made in the gas phase and directly deposited onto interdigitated electrodes. Their sensing properties (selectivity, limit of detection, response, and recovery times) have been investigated as a function of operating temperature (325-500 °C), relative humidity (RH), and interfering analyte (ethanol or water vapor) concentration. It was found that Si-doping increases and stabilizes the acetone-selective e-WO3 phase while increasing its thermal stability and, thus, results in superior sensing performance with an optimum at about 10 mol % Si content. Furthermore, increasing the operation temperature decreased the detector response to water vapor, and above 400 °C, it was (≤0.7) always below the threshold (10.6) for fake diabetes detection in ideal conditions. At this temperature and at 90% RH, healthy humans (≤900 ppb acetone) and diabetes patients (≥1800 ppb) can be clearly distinguished by a remarkable gap (40%) in sensor response. As a result, these solid state detectors may offer a portable and cost-effective alternative to more bulky systems for noninvasive diabetes detection by human breath analysis.
AB - Acetone in the human breath is an important marker for noninvasive diagnosis of diabetes. Here, novel chemo-resistive detectors have been developed that allow rapid measurement of ultralow acetone concentrations (down to 20 ppb) with high signal-to-noise ratio in ideal (dry air) and realistic (up to 90% RH) conditions. The detector films consist of (highly sensitive) pure and Si-doped WO3 nanoparticles (10-13 nm in diameter) made in the gas phase and directly deposited onto interdigitated electrodes. Their sensing properties (selectivity, limit of detection, response, and recovery times) have been investigated as a function of operating temperature (325-500 °C), relative humidity (RH), and interfering analyte (ethanol or water vapor) concentration. It was found that Si-doping increases and stabilizes the acetone-selective e-WO3 phase while increasing its thermal stability and, thus, results in superior sensing performance with an optimum at about 10 mol % Si content. Furthermore, increasing the operation temperature decreased the detector response to water vapor, and above 400 °C, it was (≤0.7) always below the threshold (10.6) for fake diabetes detection in ideal conditions. At this temperature and at 90% RH, healthy humans (≤900 ppb acetone) and diabetes patients (≥1800 ppb) can be clearly distinguished by a remarkable gap (40%) in sensor response. As a result, these solid state detectors may offer a portable and cost-effective alternative to more bulky systems for noninvasive diabetes detection by human breath analysis.
UR - http://www.scopus.com/inward/record.url?scp=77951794989&partnerID=8YFLogxK
U2 - 10.1021/ac902695n
DO - 10.1021/ac902695n
M3 - Article
SN - 0003-2700
VL - 82
SP - 3581
EP - 3587
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 9
ER -