TY - JOUR
T1 - Six-year changes in refraction and related ocular biometric factors in an adult Chinese population
AU - Han, Xiaotong
AU - Guo, Xinxing
AU - Lee, Pei Ying
AU - Morgan, Ian G.
AU - He, Mingguang
N1 - Publisher Copyright:
© 2017 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/8
Y1 - 2017/8
N2 - Purpose: To investigate longitudinal changes in refraction and biometry in Chinese adults. Design: Population-based prospective cohort study. Methods: 1817 subjects aged ≥ 35 years were randomly recruited from Yuexiu district, Guangzhou, China in 2008. Of which 1595 (87.8%) were reexamined in 2010 and 1427 (78.5%) were reexamined in 2014. Non-cycloplegic automated refraction and visual acuity test were performed at baseline and the 6-year follow-up examination for all participants. In addition, 50% of the participants were randomly selected for axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) measurements using non-contact partial coherence laser interferometry. Lens power (LP) was calculated with the Bennett’s equation. Results: A total of 1300 participants were included in current analysis (2008 mean [SD] age, 51.4 [10.6] years; 54.5% women). Mean change in spherical equivalence (SE) was +0.24 (95% confidence interval [CI], +0.19 to +0.30), +0.51 (95% CI, +0.46 to +0.57), +0.26 (95% CI, +0.15 to +0.38) and -0.05 (95% CI, -0.21 to +0.10) diopters (D) for individuals in the age groups of 35 to 44, 45 to 54, 55 to 64 and 65+ years at baseline, respectively. Corneal power, AL and LT increased while ACD and LP decreased during the follow-up. Baseline SE and changes in biometric factors could explain 97.2% of the variance in longitudinal SE change while LP solely could explain 65.2%. Six-year mean change in cylinder power was -0.16 (95% CI, -0.19 to -0.13) D, the axis of astigmatism changed from “with-the-rule” to “against-the-rule” in 16.4% of the participants and to “oblique” in 0.9%. Conclusions: This study confirms a hyperopic shift in the elderly before 65 years old and a myopic shift thereafter. Longitudinal refraction change could be well explained by corresponding biometry changes, especially LP. There is also a shift to “against-the-rule” astigmatism for the adult population.
AB - Purpose: To investigate longitudinal changes in refraction and biometry in Chinese adults. Design: Population-based prospective cohort study. Methods: 1817 subjects aged ≥ 35 years were randomly recruited from Yuexiu district, Guangzhou, China in 2008. Of which 1595 (87.8%) were reexamined in 2010 and 1427 (78.5%) were reexamined in 2014. Non-cycloplegic automated refraction and visual acuity test were performed at baseline and the 6-year follow-up examination for all participants. In addition, 50% of the participants were randomly selected for axial length (AL), anterior chamber depth (ACD) and lens thickness (LT) measurements using non-contact partial coherence laser interferometry. Lens power (LP) was calculated with the Bennett’s equation. Results: A total of 1300 participants were included in current analysis (2008 mean [SD] age, 51.4 [10.6] years; 54.5% women). Mean change in spherical equivalence (SE) was +0.24 (95% confidence interval [CI], +0.19 to +0.30), +0.51 (95% CI, +0.46 to +0.57), +0.26 (95% CI, +0.15 to +0.38) and -0.05 (95% CI, -0.21 to +0.10) diopters (D) for individuals in the age groups of 35 to 44, 45 to 54, 55 to 64 and 65+ years at baseline, respectively. Corneal power, AL and LT increased while ACD and LP decreased during the follow-up. Baseline SE and changes in biometric factors could explain 97.2% of the variance in longitudinal SE change while LP solely could explain 65.2%. Six-year mean change in cylinder power was -0.16 (95% CI, -0.19 to -0.13) D, the axis of astigmatism changed from “with-the-rule” to “against-the-rule” in 16.4% of the participants and to “oblique” in 0.9%. Conclusions: This study confirms a hyperopic shift in the elderly before 65 years old and a myopic shift thereafter. Longitudinal refraction change could be well explained by corresponding biometry changes, especially LP. There is also a shift to “against-the-rule” astigmatism for the adult population.
UR - http://www.scopus.com/inward/record.url?scp=85028541865&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0183364
DO - 10.1371/journal.pone.0183364
M3 - Article
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0183364
ER -