Slepian Spatial-Spectral Concentration Problem on the Sphere: Analytical Formulation for Limited Colatitude-Longitude Spatial Region

Alice P. Bates, Zubair Khalid, Rodney A. Kennedy

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    In this paper, we develop an analytical formulation for the Slepian spatial-spectral concentration problem on the sphere for a limited colatitude-longitude spatial region on the sphere, defined as the Cartesian product of a range of positive colatitudes and longitudes. The solution of the Slepian problem is a set of functions that are optimally concentrated and orthogonal within a spatial or spectral region. These properties make them useful for applications where measurements are taken within a spatially limited region of the sphere and/or a signal is only to be analyzed within a region of the sphere. To support localized spectral/spatial analysis, and estimation and sparse representation of localized data in these applications, we exploit the expansion of spherical harmonics in the complex exponential basis to develop an analytical formulation for the Slepian concentration problem for a limited colatitude-longitude spatial region. We also extend the analytical formulation for spatial regions that are comprised of a union of rotated limited colatitude-longitude subregions. By exploiting various symmetries of the proposed formulation, we design a computationally efficient algorithm for the implementation of the proposed analytical formulation. Such a reduction in computation time is demonstrated through numerical experiments. We present illustrations of our results with the help of numerical examples and show that the representation of a spatially concentrated signal is indeed sparse in the Slepian basis.

    Original languageEnglish
    Article number7802619
    Pages (from-to)1527-1537
    Number of pages11
    JournalIEEE Transactions on Signal Processing
    Volume65
    Issue number6
    DOIs
    Publication statusPublished - 15 Mar 2017

    Fingerprint

    Dive into the research topics of 'Slepian Spatial-Spectral Concentration Problem on the Sphere: Analytical Formulation for Limited Colatitude-Longitude Spatial Region'. Together they form a unique fingerprint.

    Cite this