Small-scale heterogeneity in the lowermost mantle beneath Alaska and northern Pacific revealed from shear-wave triplications

Yuwei Li*, Meghan S. Miller, Hrvoje Tkalčić, Malcolm Sambridge

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    The D″ layer, regarded as a thermal boundary layer and a chemically distinct region above the core-mantle boundary (CMB), has been associated with the phase transition from bridgmanite (Bm) to post-perovskite (pPv) in the lowermost mantle. However, the composition of the lowermost mantle and thermal conditions where Bm-pPv phase-transition occurs is still debatable. The methods typically used to study the fine-scale seismic features in the D″ layer has provided important information. However, trial-and-error seismic waveform modelling cannot uniquely quantify D″-layer properties because of subjective model-parameterization choices and inherent non-uniqueness of solutions and the waveform inversion method has a limited resolution of the velocity gradient and depth of the D″ discontinuity. We develop a grid-search scheme to constrain the detailed 1-D shear-wave velocity structure in the lowermost mantle beneath Alaska and the northern Pacific, accompanied with quantitative assessment of the uncertainty of 1D models. Our results show strong lateral variations of the D″ discontinuity from west to east beneath Alaska, along with the existence of smaller-scale heterogeneities in the east. We find a broad velocity increase, as thick as 240 km, at the top of D″ that indicates this region may involve a composite of downwelling thermo-chemical anomalies at the CMB. There are even smaller scale heterogeneities of approximately 120 km×120 km in size with larger lateral variations in the lowermost mantle beneath northern Pacific. Both the magnitude and gradient of the velocity at the top of the D″ layer vastly change in adjacent regions, with an increase from 2.8% to 4.5% in magnitude and from 0.08% to 1.2% in gradient, but with a relatively consistent depth of the D″ discontinuity at ∼340 km above the CMB. The weak correlation between D″ topography and velocity variations indicate chemical heterogeneities must be present beneath the northern Pacific, which might come from north-westward subducted Pacific oceanic lithosphere. Our characterisation of the spatial pattern of small-scale heterogeneities in the lowermost mantle supports a hybrid thermo-chemical boundary layer (TCBL) model beneath Alaska and northern Pacific.

    Original languageEnglish
    Article number116768
    JournalEarth and Planetary Science Letters
    Volume559
    DOIs
    Publication statusPublished - 1 Apr 2021

    Fingerprint

    Dive into the research topics of 'Small-scale heterogeneity in the lowermost mantle beneath Alaska and northern Pacific revealed from shear-wave triplications'. Together they form a unique fingerprint.

    Cite this