TY - GEN
T1 - SNeS
T2 - 17th European Conference on Computer Vision, ECCV 2022
AU - Insafutdinov, Eldar
AU - Campbell, Dylan
AU - Henriques, João F.
AU - Vedaldi, Andrea
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - We present a method for the accurate 3D reconstruction of partly-symmetric objects. We build on the strengths of recent advances in neural reconstruction and rendering such as Neural Radiance Fields (NeRF). A major shortcoming of such approaches is that they fail to reconstruct any part of the object which is not clearly visible in the training image, which is often the case for in-the-wild images and videos. When evidence is lacking, structural priors such as symmetry can be used to complete the missing information. However, exploiting such priors in neural rendering is highly non-trivial: while geometry and non-reflective materials may be symmetric, shadows and reflections from the ambient scene are not symmetric in general. To address this, we apply a soft symmetry constraint to the 3D geometry and material properties, having factored appearance into lighting, albedo colour and reflectivity. We evaluate our method on the recently introduced CO3D dataset, focusing on the car category due to the challenge of reconstructing highly-reflective materials. We show that it can reconstruct unobserved regions with high fidelity and render high-quality novel view images.
AB - We present a method for the accurate 3D reconstruction of partly-symmetric objects. We build on the strengths of recent advances in neural reconstruction and rendering such as Neural Radiance Fields (NeRF). A major shortcoming of such approaches is that they fail to reconstruct any part of the object which is not clearly visible in the training image, which is often the case for in-the-wild images and videos. When evidence is lacking, structural priors such as symmetry can be used to complete the missing information. However, exploiting such priors in neural rendering is highly non-trivial: while geometry and non-reflective materials may be symmetric, shadows and reflections from the ambient scene are not symmetric in general. To address this, we apply a soft symmetry constraint to the 3D geometry and material properties, having factored appearance into lighting, albedo colour and reflectivity. We evaluate our method on the recently introduced CO3D dataset, focusing on the car category due to the challenge of reconstructing highly-reflective materials. We show that it can reconstruct unobserved regions with high fidelity and render high-quality novel view images.
KW - 3D reconstruction
KW - Neural rendering
KW - Novel view synthesis
UR - http://www.scopus.com/inward/record.url?scp=85144577351&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-19824-3_22
DO - 10.1007/978-3-031-19824-3_22
M3 - Conference contribution
AN - SCOPUS:85144577351
SN - 9783031198236
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 367
EP - 383
BT - Computer Vision – ECCV 2022 - 17th European Conference, Proceedings
A2 - Avidan, Shai
A2 - Brostow, Gabriel
A2 - Cissé, Moustapha
A2 - Farinella, Giovanni Maria
A2 - Hassner, Tal
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 23 October 2022 through 27 October 2022
ER -