TY - JOUR
T1 - Soft phonon modes and diffuse scattering in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor ferroelectrics
AU - Li, Qian
AU - Danilkin, Sergey
AU - Deng, Guochu
AU - Li, Zhengrong
AU - Withers, Ray L.
AU - Xu, Zhuo
AU - Liu, Yun
N1 - Publisher Copyright:
© 2018 The Chinese Ceramic Society
PY - 2018/12
Y1 - 2018/12
N2 - 0.29Pb(In1/2Nb1/2)O3-0.45Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 single crystals have been studied using triple-axis based elastic and inelastic neutron scattering. Elastic diffuse scattering reveals the presence of polar nano-regions (PNR's) in this system, which emerge at the Burns temperature (TB ∼630 K) and then grow continuously in population and correlation size down to 100 K. At 300 K, characteristic “butterfly” and ellipsoid shaped diffuse scattering patterns are observed in the HK0 scattering plane. Electrical poling along the [110] direction produces a marked asymmetry in the diffuse scattering patterns, with the parallel-to-the-field components enhanced while the perpendicular-to-the-field components suppressed. Several low-energy phonon branches along the [100] and [110] directions have been measured. Most significantly, the PNR-acoustic phonon coupling is confirmed for the [110] transverse acoustic (TA) phonons polarized along the [1-10] real space direction and the [100] TA phonons. This coupling appears to be anisotropic and correlated with the PNRs’ distribution, and also affected by the relative length scales of the PNRs and phonon wave vectors. The well-known “waterfall” phenomenon is observed on the [100] and [110] transverse optical (TO) branches, near the zone center. The optical phonons exhibit a lowest-energy, zone center soft TO mode, whose squared energy increases linearly with decreasing temperature below TB.
AB - 0.29Pb(In1/2Nb1/2)O3-0.45Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 single crystals have been studied using triple-axis based elastic and inelastic neutron scattering. Elastic diffuse scattering reveals the presence of polar nano-regions (PNR's) in this system, which emerge at the Burns temperature (TB ∼630 K) and then grow continuously in population and correlation size down to 100 K. At 300 K, characteristic “butterfly” and ellipsoid shaped diffuse scattering patterns are observed in the HK0 scattering plane. Electrical poling along the [110] direction produces a marked asymmetry in the diffuse scattering patterns, with the parallel-to-the-field components enhanced while the perpendicular-to-the-field components suppressed. Several low-energy phonon branches along the [100] and [110] directions have been measured. Most significantly, the PNR-acoustic phonon coupling is confirmed for the [110] transverse acoustic (TA) phonons polarized along the [1-10] real space direction and the [100] TA phonons. This coupling appears to be anisotropic and correlated with the PNRs’ distribution, and also affected by the relative length scales of the PNRs and phonon wave vectors. The well-known “waterfall” phenomenon is observed on the [100] and [110] transverse optical (TO) branches, near the zone center. The optical phonons exhibit a lowest-energy, zone center soft TO mode, whose squared energy increases linearly with decreasing temperature below TB.
UR - http://www.scopus.com/inward/record.url?scp=85048524889&partnerID=8YFLogxK
U2 - 10.1016/j.jmat.2018.06.001
DO - 10.1016/j.jmat.2018.06.001
M3 - Article
SN - 2352-8478
VL - 4
SP - 345
EP - 352
JO - Journal of Materiomics
JF - Journal of Materiomics
IS - 4
ER -