TY - GEN
T1 - Solar concentrator shape characterisation using composite light-field imaging
AU - Garbrecht, Oliver
AU - Zapata, Jose
AU - Kneer, Reinhold
N1 - Publisher Copyright:
© Copyright 2015 by ASME.
PY - 2015
Y1 - 2015
N2 - The shape of an installed solar concentrator (e.g. a heliostat) may differ from its original design due to manufacturing defects, structural/wind loads and thermal expansion. By measuring the shape of a solar concentrator, it is possible to account for the deviation in optical performance from its original design point. A method to measure concentrator shape needs to be fast, accurate, and not involve contact or interference with the reflective surface of the concentrator. State-of-the-art techniques include flux mapping, photogrammetry, and deflectometry using conventional cameras. This paper presents a study to characterise solar concentrator shapes using light-field imaging. Conventional cameras capture the light intensity of a point in a scene at a single point in the sensor, creating a two-dimensional image. A light field camera features multiple micro-lenses placed between the main lens and the sensor, providing many small images from slightly different angles in a single shot. This information is used to reconstruct the position of a light source in space. The advantage of this new technique to the ones mentioned above is that the light field camera is robust and self-contained, which allows easy-to-use application in heliostat fields. In this study, light-field camera measurements were performed with flat mirrors and a curved mirror under laboratory conditions. In order to resolve the surface of the mirror surfaces, several methods to impose contours of the mirror surface have been studied, including dirt, small water droplets, scattering of low-power laser light, and paper-marks. A wide range of camerato-mirror distances between 43cm and 5 m have been studied. Greater distances allow the capture of the entire surface, but decrease the precision of depth measurements. In order to obtain high precision measurements while being able to capture the entire surface, a compositing strategy has been developed, combining several light-field image measurements. The overall accuracy of the system was improved further by averaging measurements over several image frames. Subsequently, the reconstructed surface points have been fed to a ray-tracing algorithm realized in Matlab/Python. Results in this study are able to resolve the shape of small concentrators to sub-millimetre precision when taking pictures at a distance of 0.4 m.
AB - The shape of an installed solar concentrator (e.g. a heliostat) may differ from its original design due to manufacturing defects, structural/wind loads and thermal expansion. By measuring the shape of a solar concentrator, it is possible to account for the deviation in optical performance from its original design point. A method to measure concentrator shape needs to be fast, accurate, and not involve contact or interference with the reflective surface of the concentrator. State-of-the-art techniques include flux mapping, photogrammetry, and deflectometry using conventional cameras. This paper presents a study to characterise solar concentrator shapes using light-field imaging. Conventional cameras capture the light intensity of a point in a scene at a single point in the sensor, creating a two-dimensional image. A light field camera features multiple micro-lenses placed between the main lens and the sensor, providing many small images from slightly different angles in a single shot. This information is used to reconstruct the position of a light source in space. The advantage of this new technique to the ones mentioned above is that the light field camera is robust and self-contained, which allows easy-to-use application in heliostat fields. In this study, light-field camera measurements were performed with flat mirrors and a curved mirror under laboratory conditions. In order to resolve the surface of the mirror surfaces, several methods to impose contours of the mirror surface have been studied, including dirt, small water droplets, scattering of low-power laser light, and paper-marks. A wide range of camerato-mirror distances between 43cm and 5 m have been studied. Greater distances allow the capture of the entire surface, but decrease the precision of depth measurements. In order to obtain high precision measurements while being able to capture the entire surface, a compositing strategy has been developed, combining several light-field image measurements. The overall accuracy of the system was improved further by averaging measurements over several image frames. Subsequently, the reconstructed surface points have been fed to a ray-tracing algorithm realized in Matlab/Python. Results in this study are able to resolve the shape of small concentrators to sub-millimetre precision when taking pictures at a distance of 0.4 m.
UR - http://www.scopus.com/inward/record.url?scp=84949656883&partnerID=8YFLogxK
U2 - 10.1115/ES2015-49649
DO - 10.1115/ES2015-49649
M3 - Conference contribution
T3 - ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
BT - Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials
PB - American Society of Mechanical Engineers
T2 - ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
Y2 - 28 June 2015 through 2 July 2015
ER -