Abstract
We introduce the first online kernelized version of SARSA(?) to permit sparsifi- cation for arbitrary ? for 0 = ? = 1; this is possible via a novel kernelization of the eligibility trace that is maintained separately from the kernelized value function. This separation is crucial for preserving the functional structure of the eligibility trace when using sparse kernel projection techniques that are essential for memory efficiency and capacity control. The result is a simple and practical Kernel-SARSA(?) algorithm for general 0 = ? = 1 that is memory-efficient in comparison to standard SARSA(?) (using various basis functions) on a range of domains including a real robotics task running on a Willow Garage PR2 robot.
Original language | English |
---|---|
Title of host publication | Proceedings of Machine Learning and Knowledge Discovery in Databases - European Conference (ECML PKDD 2011) |
Editors | Dimitrios Gunopulos |
Place of Publication | Berlin, Heidelberg |
Publisher | Springer |
Pages | 16 |
Edition | Peer Reviewed |
ISBN (Print) | 9783642237799 |
DOIs | |
Publication status | Published - 2011 |
Event | Machine Learning and Knowledge Discovery in Databases European Conference (ECML PKDD 2011) - Athens Greece Duration: 1 Jan 2011 → … |
Conference
Conference | Machine Learning and Knowledge Discovery in Databases European Conference (ECML PKDD 2011) |
---|---|
Period | 1/01/11 → … |
Other | September 5-9 2011 |