Abstract
Modern concerns about the spread of antibiotic resistance raise questions about the effect of bacterial species on plasmid evolution and maintenance. We studied 223 Enterobacteriaceae isolated from wild mammals and determined the number of plasmids per isolate, the size of those plasmids, and the distribution of plasmid incompatibility groups N, P, W, FII, and A/C. All of these variables were non-randomly distributed with respect to bacterial species, suggesting that host-cell factors constrain the plasmids that a strain will carry. The implication for the evolution of multiple-resistance plasmids in a clinical setting is that although inter-generic plasmid transfer may introduce a novel resistance plasmid into a bacterial genus, it is likely to be modified to suit the requirements of the new host cell. This then further suggests that resistance plasmids will evolve independent lineages within bacterial species although the genes incorporated in them may have come from the same original source.
Original language | English |
---|---|
Pages (from-to) | 79-85 |
Number of pages | 7 |
Journal | Plasmid |
Volume | 49 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2003 |