Abstract
The ability to label individual cells is useful for single-cell-level studies of complex cellular interactions and heterogeneity. Optically readable cell labeling is attractive as it can be investigated non-invasively and repeatedly at high speeds. Here, we demonstrate the feasibility of large-scale cell barcoding and identification using fluorescent polystyrene microbeads loaded into cells. Intracellular beads with different diameters in a range of 5 to 12 μm generate spectrally distinguished features or barcodes. A microfluidic chip was used to measure fluorescence resonance peaks emitted from individual cells. An algorithm comparing the peak wavelengths to a reference barcode library allowed barcode identification with high accuracy. This work provides a guideline to increase the number of unique identifiers and reduce various false-positive and false-negative errors.
Original language | English |
---|---|
Pages (from-to) | 2777-2784 |
Number of pages | 8 |
Journal | Lab on a Chip |
Volume | 17 |
Issue number | 16 |
DOIs | |
Publication status | Published - 21 Aug 2017 |