Spontaneous and action potential-evoked Ca2+ release from endoplasmic reticulum in neocortical synaptic boutons

Van Tran*, Christian Stricker

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Although the endoplasmic reticulum (ER) is present throughout axons, and IP3 and ryanodine receptors are widely expressed in nerve terminals, whether Ca2+ release from presynaptic stores contributes to action potential (AP)-evoked Ca2+ transients remains controversial. We investigated the release of Ca2+ from ER stores in boutons en passant of neocortical layer 5 pyramidal neurons. A hallmark of these stores is that they spontaneously release Ca2+ at a low frequency. Using a high-affinity Ca2+ indicator, we documented and characterised such spontaneous Ca2+ transients (sCaTs), which occurred at a rate of ~0.2 per min and raised the intracellular Ca2+ concentration ([Ca2+]i) by ~2 µM in the absence of exogenous buffers. Caffeine increased the average frequency of sCaTs by 90%, without affecting their amplitude and decay kinetics. Therefore, presynaptic ryanodine receptors were likely involved. To determine if presynaptic ER stores contribute to intracellular Ca2+ accumulation during repetitive stimulation, we measured [Ca2+]i during 2 s long trains of APs evoked at 10–50 Hz. We found that for frequencies <20 Hz, [Ca2+]i reached a steady state within ~500 ms after stimulation onset. However, for higher frequencies, [Ca2+]i continued to increase with AP number, suggesting that the rate of Ca2+ entry exceeded the rate of clearance. Comparison between measured and predicted values indicates supralinear summation of Ca2+. Block of the sarco/endoplasmic reticulum Ca2+-ATPase reduced the supralinearity of summation, without reducing the amplitude of a single AP-evoked Ca2+ transient. Together, our results implicate presynaptic ER stores as a source of Ca2+ during repetitive stimulation.

    Original languageEnglish
    Article number102433
    JournalCell Calcium
    Volume97
    DOIs
    Publication statusPublished - Jul 2021

    Fingerprint

    Dive into the research topics of 'Spontaneous and action potential-evoked Ca2+ release from endoplasmic reticulum in neocortical synaptic boutons'. Together they form a unique fingerprint.

    Cite this