Statistical properties of supersonic turbulence in the Lagrangian and Eulerian frameworks

Lukas Konstandin*, Christoph Federrath, Ralf S. Klessen, Wolfram Schmidt

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

Abstract We present a systematic study of the influence of different forcing types on the statistical properties of supersonic, isothermal turbulence in both the Lagrangian and Eulerian frameworks. We analyse a series of high-resolution, hydrodynamical grid simulations with Lagrangian tracer particles and examine the effects of solenoidal (divergence-free) and compressive (curl-free) forcing on structure functions, their scaling exponents, and the probability density functions of the gas density and velocity increments. Compressively driven simulations show significantly larger density contrast, more intermittent behaviour, and larger fractal dimension of the most dissipative structures at the same root mean square Mach number. We show that the absolute values of Lagrangian and Eulerian structure functions of all orders in the integral range are only a function of the root mean square Mach number, but independent of the forcing. With the assumption of a Gaussian distribution for the probability density function of the velocity increments for large scales, we derive a model that describes this behaviour.

Original languageEnglish
Pages (from-to)183-206
Number of pages24
JournalJournal of Fluid Mechanics
Volume692
DOIs
Publication statusPublished - 10 Feb 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Statistical properties of supersonic turbulence in the Lagrangian and Eulerian frameworks'. Together they form a unique fingerprint.

Cite this