TY - JOUR
T1 - Stem cell activity in the developing human cornea
AU - Davies, Sarah B.
AU - Chui, Jeanie
AU - Madigan, Michelle C.
AU - Provis, Jan M.
AU - Wakefield, Denis
AU - Di Girolamo, Nick
PY - 2009/11
Y1 - 2009/11
N2 - The adult cornea harbors stem cells (SCs) in its periphery, in a niche known as the limbus. Over the past 2 decades there has been substantial research into these adult corneal SCs, their limbal niche, and their therapeutic applications. However, few studies have investigated how this niche and its SCs develop in humans. To better characterize this development, human fetal corneas from 8.5-to 22-weeks'-gestation (n = 173), neonatal (n = 2), and adult (n = 10) specimens were obtained. Histological and immunohistochemical assessments were conducted to determine embryological changes and expression of developmental and SC-related genes. Fresh fetal corneas were explanted to propagate corneal progenitors and cells characterized using reverse transcription-polymerase chain reaction, immunohistochemistry, flow cytometry, and colony-forming assays. A novel "ridge-like" structure was identified, circumscribing the fetal cornea, which we hypothesize represents the rudimentary SC niche. Immunohistochemistry disclosed "stem-like" cells across the cornea, becoming confined to this ridge with increasing gestational age. In addition, for the first time, pure long-term cultures of fetal corneal epithelium, which displayed phenotypical and functional properties similar to those of adult limbal SCs, were established. Optimization of culture techniques and purification of this SC population will allow for further investigation of their proliferative ability, with potential research and clinical applications. This study expands our understanding of limbal niche development and opens new avenues for investigation.
AB - The adult cornea harbors stem cells (SCs) in its periphery, in a niche known as the limbus. Over the past 2 decades there has been substantial research into these adult corneal SCs, their limbal niche, and their therapeutic applications. However, few studies have investigated how this niche and its SCs develop in humans. To better characterize this development, human fetal corneas from 8.5-to 22-weeks'-gestation (n = 173), neonatal (n = 2), and adult (n = 10) specimens were obtained. Histological and immunohistochemical assessments were conducted to determine embryological changes and expression of developmental and SC-related genes. Fresh fetal corneas were explanted to propagate corneal progenitors and cells characterized using reverse transcription-polymerase chain reaction, immunohistochemistry, flow cytometry, and colony-forming assays. A novel "ridge-like" structure was identified, circumscribing the fetal cornea, which we hypothesize represents the rudimentary SC niche. Immunohistochemistry disclosed "stem-like" cells across the cornea, becoming confined to this ridge with increasing gestational age. In addition, for the first time, pure long-term cultures of fetal corneal epithelium, which displayed phenotypical and functional properties similar to those of adult limbal SCs, were established. Optimization of culture techniques and purification of this SC population will allow for further investigation of their proliferative ability, with potential research and clinical applications. This study expands our understanding of limbal niche development and opens new avenues for investigation.
KW - Cell culture
KW - Cornea
KW - Developmental biology
KW - Differentiation
KW - Fetal stem cells
KW - Limbus
KW - Proliferation
KW - Tissue-specific stem cells
UR - http://www.scopus.com/inward/record.url?scp=72849131611&partnerID=8YFLogxK
U2 - 10.1002/stem.209
DO - 10.1002/stem.209
M3 - Article
SN - 1066-5099
VL - 27
SP - 2781
EP - 2792
JO - Stem Cells
JF - Stem Cells
IS - 11
ER -