Stenian A-type granitoids in the Namaqua-Natal Belt, southern Africa, Maud Belt, Antarctica and Nampula Terrane, Mozambique: Rodinia and Gondwana amalgamation implications

Tomokazu Hokada, Geoffrey H. Grantham*, Makoto Arima, Satoshi Saito, Kazuyuki Shiraishi, Richard A. Armstrong, Bruce Eglington, Keiji Misawa, Hiroshi Kaiden

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    9 Citations (Scopus)

    Abstract

    We carried out SHRIMP zircon U-Pb dating on A-type granitic intrusions from the Namaqua-Natal Province, South Africa, Sverdrupfjella, western Dronning Maud Land, Antarctica and the Nampula Province of northern Mozambique. Zircon grains in these granitic rocks are typically elongated and oscillatory zoned, suggesting magmatic origins. Zircons from the granitoid intrusions analyzed in this study suggest ∼1025–1100 Ma ages, which confirm widespread Mesoproterozoic A-type granitic magmatism in the Namaqua-Natal (South Africa), Maud (Antarctica) and Mozambique metamorphic terrains. No older inherited (e.g., ∼2500 Ma Achean basement or ∼1200 Ma island arc magmatism in northern Natal) zircon grains were seen. Four plutons from the Natal Belt (Mvoti Pluton, Glendale Pluton, Kwalembe Pluton, Ntimbankulu Pluton) display 1050–1040 Ma ages, whereas the Nthlimbitwa Pluton in northern Natal indicates older 1090–1080 Ma ages. A sample from Sverdrupfjella, Antarctica has ∼1091 Ma old zircons along with ∼530 Ma metamorphic rims. Similarly, four samples analysed from the Nampula Province of Mozambique suggest crystallization ages of ∼1060–1090 Ma but also show significant discordance with two samples showing younger ∼550 Ma overgrowths. None of the Natal samples show any younger overgrowths. A single sample from southwestern Namaqualand yielded an age of ∼1033 Ma. Currently available chronological data suggest magmatism took place in the Namaqua-Natal-Maud-Mozambique (NNMM) belt between ∼1025 Ma and ∼1100 Ma with two broad phases between ∼1060–1020 Ma and 1100–1070 Ma respectively, with peaks at between ∼1030–1040 Ma and ∼1070–1090 Ma. The age data from the granitic intrusions from Namaqualand, combined with those from Natal, Antarctica and Mozambique suggest a crude spatial-age relationship with the older >1070 Ma ages being largely restricted close to the eastern and western margins of the Kalahari Craton in northern Natal, Mozambique, Namaqualand and WDML Antarctica whereas the younger <1060 Ma ages dominate in southern Natal and western Namaqualand and are largely restricted to the southern and possibly the western margins of the Kalahari Craton. The older ages of magmatism partially overlap with or are marginally younger than the intracratonic Mkondo Large Igneous Province intruded into or extruded onto the Kalahari Craton, suggesting a tectonic relationship with the Maud Belt. Similar ages from granitic augen gneisses in Sri Lanka suggest a continuous belt stretching from Namaqualand to Sri Lanka in a reconstituted Gondwana, formed during the terminal stages of amalgamation of Rodinia and predating the East African Orogen. This contiguity contributes to defining the extent of Rodinia-age crustal blocks, subsequently fragmented by the dispersal of Rodinia and Gondwana.

    Original languageEnglish
    Pages (from-to)2265-2280
    Number of pages16
    JournalGeoscience Frontiers
    Volume10
    Issue number6
    DOIs
    Publication statusPublished - Nov 2019

    Fingerprint

    Dive into the research topics of 'Stenian A-type granitoids in the Namaqua-Natal Belt, southern Africa, Maud Belt, Antarctica and Nampula Terrane, Mozambique: Rodinia and Gondwana amalgamation implications'. Together they form a unique fingerprint.

    Cite this