Abstract
We tested the hypothesis that the level of protein adsorption onto polyelectrolyte multilayers (PEMs) is influenced by the chain stiffness of the polymers forming the multilayer. The implication being that by altering the chain stiffness, PEMs can be formed that promote or inhibit protein adsorption. Protein adsorption to PEMs consisting of flexible and semi-flexible polyelectrolytes was investigated. The flexible polyelectrolytes were poly(sodium 4-styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDDA) and the semi-flexible polyelectrolytes were sulfated chitosan (SC) and cationic guar gum (CGG). Polyelectrolytes were used in pairs to produce four types of polyelectrolyte multilayer films. Moreover, each of these films could be terminated with either of the polyelectrolytes resulting in protein adsorption being studied on 8 systems. Protein adsorption was investigated by optical reflectometry and quartz crystal microbalance with dissipation using bovine serum albumin as the test protein. We found that when a pair of semi-flexible polyelectrolytes was used very little protein adsorption took place, irrespective of which polyelectrolyte was used to terminate the film. When the film was formed by flexible polyelectrolytes, significant protein adsorption took place and the degree of adsorption depended strongly on which polyelectrolyte was used to terminate the film. We explain these observations by considering the conformation of the polyelectrolyte in the outermost region of the film and relate this to the flexibility of the polyelectrolyte chains employed to produce the polyelectrolyte multilayer. This journal is
Original language | English |
---|---|
Pages (from-to) | 3806-3816 |
Number of pages | 11 |
Journal | Soft Matter |
Volume | 10 |
Issue number | 21 |
DOIs | |
Publication status | Published - 7 Jun 2014 |