TY - JOUR
T1 - Stochastic population models hindcast population trajectory and breeding history of an endangered parrot
AU - Gautschi, Daniel
AU - Stojanovic, Dejan
AU - Macgregor, Nicholas A.
AU - Ortiz-Catedral, Luis
AU - Wilson, Melinda
AU - Olsen, Penny
AU - Crates, Ross
AU - Heinsohn, Robert
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - Understanding the population dynamics of endangered species is crucial to their conservation. Stochastic population models can be used to explore factors involved in population change, contributing to the understanding of a species’ population dynamics. Norfolk Island Green Parrots Cyanoramphus cookii have undergone significant population fluctuations in the last 50 years. Since 2013, most nestlings hatched in managed, predator-proofed nest sites have been individually marked. These nests have been considered the primary source of population growth. Yet, in 2021, most adult birds were unmarked, raising the question of whether unmarked parrots have been entering the population through undetected breeding in natural nests, and to what extent. We modelled Green Parrot population growth between 2013 and 2021 using stochastic population models in VORTEX to explore the potential dynamics involved in the observed population growth. Basic models involving breeding only in managed nests produced population estimates between 158 and 266, whereas more complex models that included breeding in unmanaged nests, and accounted for the large proportion of unmarked birds, produced population estimates between 360 and 1,041. We conclude that natural nests may have played a significant role in the population growth since 2013. If this is the case, broad-scale predator control may be largely responsible. Furthermore, our study shows how population models may be used to infer underlying demographic processes and inform conservation strategies, even in instances of data scarcity. Our method can be applied to other threatened species, and may prove particularly useful for small populations whose population dynamics remain unclear.
AB - Understanding the population dynamics of endangered species is crucial to their conservation. Stochastic population models can be used to explore factors involved in population change, contributing to the understanding of a species’ population dynamics. Norfolk Island Green Parrots Cyanoramphus cookii have undergone significant population fluctuations in the last 50 years. Since 2013, most nestlings hatched in managed, predator-proofed nest sites have been individually marked. These nests have been considered the primary source of population growth. Yet, in 2021, most adult birds were unmarked, raising the question of whether unmarked parrots have been entering the population through undetected breeding in natural nests, and to what extent. We modelled Green Parrot population growth between 2013 and 2021 using stochastic population models in VORTEX to explore the potential dynamics involved in the observed population growth. Basic models involving breeding only in managed nests produced population estimates between 158 and 266, whereas more complex models that included breeding in unmanaged nests, and accounted for the large proportion of unmarked birds, produced population estimates between 360 and 1,041. We conclude that natural nests may have played a significant role in the population growth since 2013. If this is the case, broad-scale predator control may be largely responsible. Furthermore, our study shows how population models may be used to infer underlying demographic processes and inform conservation strategies, even in instances of data scarcity. Our method can be applied to other threatened species, and may prove particularly useful for small populations whose population dynamics remain unclear.
KW - Avian conservation
KW - breeding biology
KW - conservation ecology
KW - mark-resighting
KW - nest predation
KW - population ecology
UR - http://www.scopus.com/inward/record.url?scp=85174630168&partnerID=8YFLogxK
U2 - 10.1080/01584197.2023.2267606
DO - 10.1080/01584197.2023.2267606
M3 - Article
SN - 0158-4197
VL - 123
SP - 335
EP - 344
JO - Emu
JF - Emu
IS - 4
ER -