Strategies for producing biochars with minimum PAH contamination

Wolfram Buss, Margaret C. Graham, Gillian MacKinnon, Ondšej Mašek*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

112 Citations (Scopus)

Abstract

With the aim to develop initial recommendations for production of biochars with minimal contamination with polycyclic aromatic hydrocarbons (PAHs), we analysed a systematic set of 46 biochars produced under highly controlled pyrolysis conditions. The effects of the highest treatment temperature (HTT), residence time, carrier gas flow and typical feedstocks (wheat/oilseed rape straw pellets (WSP), softwood pellets (SWP)) on 16 US EPA PAH concentration in biochar were investigated. Overall, the PAH concentrations ranged between 1.2 and 100 mg kg-1. On average, straw-derived biochar contained 5.8 times higher PAH concentrations than softwood-derived biochar. In a batch pyrolysis reactor, increasing carrier gas flow significantly decreased PAH concentrations in biochar. In case of straw, the concentrations dropped from 43.1 mg kg-1 in the absence of carrier gas to 3.5 mg kg-1 with a carrier gas flow of 0.67 L min-1, whilst for woody biomass PAHs concentrations declined from 7.4 mg kg-1 to 1.5 mg kg-1 with the same change of carrier gas flow. In the temperature range of 350-650 °C the HTT did not have any significant effect on PAH content in biochars, irrespective of feedstock type, however, in biochars produced at 750 °C the PAH concentrations were significantly higher. After detailed investigation it was deduced that this intensification in PAH contamination at high temperatures was most likely down to the specifics of the unit design of the continuous pyrolysis reactor used. Overall, it was concluded that besides PAH formation, vaporisation determines the PAH concentration in biochar. The fact that both of these mechanisms intensify with pyrolysis temperature (one increasing and the other one decreasing the PAH concentration in biochar) could explain why no consistent trend in PAH content in biochar with temperature has been found in the literature.

Original languageEnglish
Pages (from-to)24-30
Number of pages7
JournalJournal of Analytical and Applied Pyrolysis
Volume119
DOIs
Publication statusPublished - 1 May 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Strategies for producing biochars with minimum PAH contamination'. Together they form a unique fingerprint.

Cite this