TY - JOUR
T1 - Structural analysis of an Avr4 effector ortholog offers insight into chitin binding and recognition by the Cf-4 receptor
AU - Kohler, Amanda C.
AU - Chen, Li Hung
AU - Hurlburt, Nicholas
AU - Salvucci, Anthony
AU - Schwessinger, Benjamin
AU - Fisher, Andrew J.
AU - Stergiopoulos, Ioannis
N1 - Publisher Copyright:
© 2016 American Society of Plant Biologists. All rights reserved.
PY - 2016/8
Y1 - 2016/8
N2 - Chitin is a key component of fungal cell walls and a potent inducer of innate immune responses. Consequently, fungi may secrete chitin-binding lectins, such as the Cf-Avr4 effector protein from the tomato pathogen Cladosporium fulvum, to shield chitin from host-derived chitinases during infection. Homologs of Cf-Avr4 are found throughout Dothideomycetes, and despite their modest primary sequence identity, many are perceived by the cognate tomato immune receptor Cf-4. Here, we determined the x-ray crystal structure of Pf-Avr4 from the tomato pathogen Pseudocercospora fuligena, thus providing a three-dimensional model of an Avr4 effector protein. In addition, we explored structural, biochemical, and functional aspects of Pf-Avr4 and Cf-Avr4 to further define the biology of core effector proteins and outline a conceptual framework for their pleiotropic recognition by single immune receptors. We show that Cf-Avr4 and Pf-Avr4 share functional specificity in binding (GlcNAc)6 and in providing protection against plant- and microbial-derived chitinases, suggesting a broader role beyond deregulation of host immunity. Furthermore, structure-guided site-directed mutagenesis indicated that residues in Pf-Avr4 important for binding chitin do not directly influence recognition by Cf-4 and further suggested that the property of recognition is structurally separated or does not fully overlap with the virulence function of the effector.
AB - Chitin is a key component of fungal cell walls and a potent inducer of innate immune responses. Consequently, fungi may secrete chitin-binding lectins, such as the Cf-Avr4 effector protein from the tomato pathogen Cladosporium fulvum, to shield chitin from host-derived chitinases during infection. Homologs of Cf-Avr4 are found throughout Dothideomycetes, and despite their modest primary sequence identity, many are perceived by the cognate tomato immune receptor Cf-4. Here, we determined the x-ray crystal structure of Pf-Avr4 from the tomato pathogen Pseudocercospora fuligena, thus providing a three-dimensional model of an Avr4 effector protein. In addition, we explored structural, biochemical, and functional aspects of Pf-Avr4 and Cf-Avr4 to further define the biology of core effector proteins and outline a conceptual framework for their pleiotropic recognition by single immune receptors. We show that Cf-Avr4 and Pf-Avr4 share functional specificity in binding (GlcNAc)6 and in providing protection against plant- and microbial-derived chitinases, suggesting a broader role beyond deregulation of host immunity. Furthermore, structure-guided site-directed mutagenesis indicated that residues in Pf-Avr4 important for binding chitin do not directly influence recognition by Cf-4 and further suggested that the property of recognition is structurally separated or does not fully overlap with the virulence function of the effector.
UR - http://www.scopus.com/inward/record.url?scp=84984833450&partnerID=8YFLogxK
U2 - 10.1105/tpc.15.00893
DO - 10.1105/tpc.15.00893
M3 - Article
SN - 1040-4651
VL - 28
SP - 1945
EP - 1965
JO - Plant Cell
JF - Plant Cell
IS - 8
ER -