TY - GEN
T1 - Structural kernel learning for large scale multiclass object co-detection
AU - Hayder, Zeeshan
AU - He, Xuming
AU - Salzmann, Mathieu
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/2/17
Y1 - 2015/2/17
N2 - Exploiting contextual relationships across images has recently proven key to improve object detection. The resulting object co-detection algorithms, however, fail to exploit the correlations between multiple classes and, for scalability reasons are limited to modeling object instance similarity with relatively low-dimensional hand-crafted features. Here, we address the problem of multiclass object co-detection for large scale datasets. To this end, we formulate co-detection as the joint multiclass labeling of object candidates obtained in a class-independent manner. To exploit the correlations between objects, we build a fully-connected CRF on the candidates, which explicitly incorporates both geometric layout relations across object classes and similarity relations across multiple images. We then introduce a structural boosting algorithm that lets us exploits rich, high-dimensional deep network features to learn object similarity within our fully-connected CRF. Our experiments on PASCAL VOC 2007 and 2012 evidences the benefits of our approach over object detection with RCNN, single-image CRF methods and state-of-the-art co-detection algorithms.
AB - Exploiting contextual relationships across images has recently proven key to improve object detection. The resulting object co-detection algorithms, however, fail to exploit the correlations between multiple classes and, for scalability reasons are limited to modeling object instance similarity with relatively low-dimensional hand-crafted features. Here, we address the problem of multiclass object co-detection for large scale datasets. To this end, we formulate co-detection as the joint multiclass labeling of object candidates obtained in a class-independent manner. To exploit the correlations between objects, we build a fully-connected CRF on the candidates, which explicitly incorporates both geometric layout relations across object classes and similarity relations across multiple images. We then introduce a structural boosting algorithm that lets us exploits rich, high-dimensional deep network features to learn object similarity within our fully-connected CRF. Our experiments on PASCAL VOC 2007 and 2012 evidences the benefits of our approach over object detection with RCNN, single-image CRF methods and state-of-the-art co-detection algorithms.
UR - http://www.scopus.com/inward/record.url?scp=84973899555&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2015.302
DO - 10.1109/ICCV.2015.302
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2632
EP - 2640
BT - 2015 International Conference on Computer Vision, ICCV 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th IEEE International Conference on Computer Vision, ICCV 2015
Y2 - 11 December 2015 through 18 December 2015
ER -