Sub-Doppler two-photon-excitation Rydberg spectroscopy of atomic xenon: Mass-selective studies of isotopic and hyperfine structure

Mitsuhiko Kono, Yabai He, Kenneth G.H. Baldwin, Brian J. Orr*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    Mass-selective sub-Doppler two-photon excitation (TPE) spectroscopy is employed to resolve isotopic contributions for transitions to high-energy Rydberg levels of xenon in an atomic beam, using narrowband pulses of coherent ultraviolet light at 205-213 nm generated by nonlinear-optical conversion processes. Previous research (Kono et al 2013 J. Phys. B: At. Mol. Opt. Phys. 46 35401), has determined isotope energy shifts and hyperfine structure for 33 high-energy Rydberg levels of gas-phase xenon and accessed Rydberg levels at TPE energies in the range of 94 100-97 300 cm-1 with unprecedented spectroscopic resolution. The new isotopic-mass-resolved results were obtained by adding a pulsed free-jet atomic-beam source and a mass-selective time-of-flight detector to the apparatus in order to discern individual xenon isotopes and extract previously unresolved spectroscopic information. Resulting isotope energy shifts and hyperfine-coupling parameters are examined with regard to trends in principal quantum number n and in atomic angular-momentum quantum numbers, together with empirical and theoretical precedents for such trends.

    Original languageEnglish
    Article number065002
    JournalJournal of Physics B: Atomic, Molecular and Optical Physics
    Volume49
    Issue number6
    DOIs
    Publication statusPublished - 23 Feb 2016

    Fingerprint

    Dive into the research topics of 'Sub-Doppler two-photon-excitation Rydberg spectroscopy of atomic xenon: Mass-selective studies of isotopic and hyperfine structure'. Together they form a unique fingerprint.

    Cite this